Theory of z-linear maps
La teoría que se desarrolla en esta tesis contempla las aplicaciones lineales Z a través de tres diferentes puntos de vista: como objetos de una categoría, como herramientas homológicas y funciones. En este trabajo se introduce por primera vez una categoría de aplicaciones lineales Z (o de las secue...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | text (thesis) |
Lenguaje: | spa |
Publicado: |
Universidad de Extremadura (España)
2003
|
Materias: | |
Acceso en línea: | https://dialnet.unirioja.es/servlet/oaites?codigo=1222 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | La teoría que se desarrolla en esta tesis contempla las aplicaciones lineales Z a través de tres diferentes puntos de vista: como objetos de una categoría, como herramientas homológicas y funciones. En este trabajo se introduce por primera vez una categoría de aplicaciones lineales Z (o de las secuencias exactas de los espacios de Banach), que designaremos Z. Identificamos tres tipos de objetos en Z: el objeto cero, los objetos singulares y cosingular, y algunos objetos universales. También abordamos el límite inductivo de aplicaciones lineales Z. Descubrimos dos hechos: es posible completar algunos diagramas de secuencias exactas y todos los objetos de Z definidos en un espacio separable, que puede ser visto como un límite inductivo. El cambio de un momento para considerar las aplicaciones lineales Z como funciones, lo que significa que este tipo de aplicaciones admiten representaciones de dimensión finita inductivas. Una herramienta fundamental en el problema de la extensión para los operadores de C ( K) por valor es el lema de Zippin, que caracteriza a los subespacios Y, ! X tal que cada operador de Y! C ( K ) se extiende a X (se dice que Y es casi complementado en X, o bien, en nuestros términos, que la extensión inducida por Y, ! X es casi trivial o C ( K ) trivial). La existencia de versiones convexas es precisamente lo que nos permite representar aplicaciones lineales Z como límites inductivos de mapas con rango de dimensión finita (esto es lo que llamamos a la representación de dimensión finita inductiva de F). |
---|