Construcción de procesos iterativos mediante aceleraciones del método de Newton

TENIENDO EN CUENTA LA INTERPRETACION GEOMETRICA DEL METODO DE NEWTON EN EL CASO ESCALAR, SE OBSERVA QUE A MENOR CONVEXIDAD LOGARITMICA DE LA CURVA Y=F(X), LA SUCESION DE NEWTON SE APROXIMA MAS RAPIDAMENTE A LA RAIZ DE LA ECUACION F(X)=0. A PARTIR DE LA INFLUENCIA QUE TIENE LA CONVEXIDAD LOGARITMICA...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ezquerro Fernández, José Antonio
Otros Autores: Hernández Verón, Miguel Angel (Universidad de La Rioja)
Formato: text (thesis)
Lenguaje:spa
Publicado: Universidad de La Rioja (España) 1996
Acceso en línea:https://dialnet.unirioja.es/servlet/oaites?codigo=14
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:TENIENDO EN CUENTA LA INTERPRETACION GEOMETRICA DEL METODO DE NEWTON EN EL CASO ESCALAR, SE OBSERVA QUE A MENOR CONVEXIDAD LOGARITMICA DE LA CURVA Y=F(X), LA SUCESION DE NEWTON SE APROXIMA MAS RAPIDAMENTE A LA RAIZ DE LA ECUACION F(X)=0. A PARTIR DE LA INFLUENCIA QUE TIENE LA CONVEXIDAD LOGARITMICA EN LA VELOCIDAD DE CONVERGENCIA DE LA SUCESION DE NEWTON, OBTENEMOS TRES PROCEDIMIENTOS DE ACELERACION DEL METODO DE NEWTON. MEDIANTE ESTOS TRES PROCEDIMIENTOS OBTENEMOS ACELERACIONES PUNTO A PUNTO, QUE NOS PERMITEN DEFINIR PROCESOS ITERATIVOS INDEPENDIENTES. A CONTINUACION, DOS OBJETIVOS CENTRALES MARCAN NUESTRO INTERES. EN PRIMER LUGAR, EL ANALISIS DE LA CONVERGENCIA DE ESTOS NUEVOS PROCESOS ITERATIVOS EN EL CASO REAL, EN EL PLANO COMPLEJO Y EN ESPACIOS DE BANACH; Y EN SEGUNDO LUGAR, LA CONSTRUCCION DE PROCESOS ITERATIVOS CON ORDEN DE CONVERGENCIA NATURAL PREFIJADO. FINALMENTE, SE REALIZA UN ESTUDIO DE LA CONVERGENCIA DE UNA NUEVA FAMILIA UNIPARAMETRICA DE PROCESOS ITERATIVOS DE ORDEN TRES.