Combinatorial Koszul Homology: computations and Applications
With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis are the following: Analyze the Koszul homology of monomial ideals and apply it to describe the structure of monomial ideals. Describe algorithm...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | text (thesis) |
Lenguaje: | eng |
Publicado: |
Universidad de La Rioja (España)
2008
|
Materias: | |
Acceso en línea: | https://dialnet.unirioja.es/servlet/oaites?codigo=13745 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis are the following:
Analyze the Koszul homology of monomial ideals and apply it to describe the structure of monomial ideals. Describe algorithms to perform efficient computations of the homological invariants of monomial ideals. Apply the theory and computations on monomial ideals to problems inside and outside mathematics.
The thesis introduces as a main tool Mayer-Vietoris trees of monomial ideals. |
---|