Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture
Introduction: The vegetative status of grapevines influences yield and grape composition. The assessment of the vineyard spatial and temporal variability in precision viticulture requires a large amount of data. Traditional methods are not suitable, as they are time and labour demanding, making the...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | text (thesis) |
Lenguaje: | eng |
Publicado: |
Universidad de La Rioja (España)
2015
|
Materias: | |
Acceso en línea: | https://dialnet.unirioja.es/servlet/oaites?codigo=46013 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai-TES0000008563 |
---|---|
record_format |
dspace |
institution |
DialNet |
collection |
DialNet |
language |
eng |
topic |
Remote piloted aerial systems (RPAS) chlorophyll fluorescence sensor on-the-go plant phenotyping vegetative growth nitrogen Vitis vinifera L RPAS (Remotely Piloted Aerial System o en español sistemas aéreos pilotados de forma remota) sensor de fluorescencia de la clorofila en movimiento fenotipado vegetal crecimiento vegetativo nitrógeno Vitis vinifera L |
spellingShingle |
Remote piloted aerial systems (RPAS) chlorophyll fluorescence sensor on-the-go plant phenotyping vegetative growth nitrogen Vitis vinifera L RPAS (Remotely Piloted Aerial System o en español sistemas aéreos pilotados de forma remota) sensor de fluorescencia de la clorofila en movimiento fenotipado vegetal crecimiento vegetativo nitrógeno Vitis vinifera L Rey Caramés, Clara Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
description |
Introduction: The vegetative status of grapevines influences yield and grape composition. The assessment of the vineyard spatial and temporal variability in precision viticulture requires a large amount of data. Traditional methods are not suitable, as they are time and labour demanding, making the analysis of a high number of samples at different timings not feasible. For this purpose, remote and proximal sensing techniques could be useful for monitoring the vineyards in a reliable, fast and non-destructive way.
Objectives: The aim pursued by this research was to assess the spatial and temporal variability of the vegetative status of a vineyard using nondestructive sensors. Towards that end, the usefulness of a remotely piloted aerial system (RPAS) multispectral imagery was tested to assess the vegetative growth of a vineyard. A special focus was set on proximal sensing, especially on a fluorescence sensor used either manually and on-the-go, to determine chlorophyll, flavonol and nitrogen content in grapevine leaves.
Materials and methods: A multispectral sensor mounted on a RPAS was employed for monitoring the spatial variability of the vegetative status of a commercial vineyard (Vitis vinifera L.) and the assessment of vegetative parameters, such as leaf area, shoot length and pruning weight, leaf chlorophyll content and nitrogen status. Subsequently, a fluorescence sensor, used manually and mounted on a quad, was used for assessing the leaf chlorophyll, epidermal flavonol and nitrogen content and monitoring the spatial variability of the vineyard vegetative and nutritional status.
Results and discussion: The spectral indices derived from RPAS multispectral imagery yielded significant and moderate correlations with pruning weight, secondary shoot length, secondary leaf area, leaf chlorophyll content and nitrogen status. These results indicated its potential to appraise the vineyard vegetative status but also revealed some disadvantages regarding technological and operational factors. Regarding proximal sensing, the handheld fluorescence sensor demonstrated its capability to properly measure the chlorophyll, epidermal flavonols and nitrogen content in grapevine leaves. The best indicators of these vegetative and nutritional components were found to be the fluorescence indices of the whole leaf (adaxial and abaxial). Thanks to the calibration equations provided, the leaf chlorophyll concentration can be obtained from the fluorescence measurements. Concerning the nitrogen status, among all the possible equations of the nitrogen balance index (NBI), the one calculated as the chlorophyll-toflavonol ratio yielded the best evaluation of the nitrogen status of the grapevine. The hand-held fluorescence sensor allowed characterising the spatio-temporal variability of leaf chlorophyll content and nitrogen status along the ripening season. While the nitrogen status showed different spatial variability across the season, leaf chlorophyll content spatial behaviour remained stable. Moreover, the fluorescence sensor adapted to be mounted on a vehicle demonstrated its capability to reliably estimate the chlorophyll, epidermal flavonol and nitrogen content on-the-go in grapevine leaves, and to assess their spatial variability within the vineyard.
Conclusions: Remote and proximal sensing have proved to be certainly useful in precision viticulture as they are able to provide a large amount of data in a fast and non-destructive way, overcoming the disadvantages of the classical manual, destructive, laborious methods. Specifically, the fluorescence sensor has shown to be a precise tool to assess xv key vegetative and nutritional parameters in the field. Furthermore, its successful adaptation to operate mounted on a vehicle and perform an onthe- go assessment of the vegetative status of the vineyard is a significant step forward in the current process of sensor integration on mobile platforms and the practical implementation of the precision viticulture techniques. |
author2 |
Tardáguila Laso, Javier (Universidad de La Rioja) |
author_facet |
Tardáguila Laso, Javier (Universidad de La Rioja) Rey Caramés, Clara |
format |
text (thesis) |
author |
Rey Caramés, Clara |
author_sort |
Rey Caramés, Clara |
title |
Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
title_short |
Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
title_full |
Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
title_fullStr |
Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
title_full_unstemmed |
Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticulture |
title_sort |
assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: application of remote and proximal sensing technologies in precision viticulture |
publisher |
Universidad de La Rioja (España) |
publishDate |
2015 |
url |
https://dialnet.unirioja.es/servlet/oaites?codigo=46013 |
work_keys_str_mv |
AT reycaramesclara assessmentofthespatialvariabilityofvegetativestatusinvineyardsusingnondestructivesensorsapplicationofremoteandproximalsensingtechnologiesinprecisionviticulture |
_version_ |
1718346630043795456 |
spelling |
oai-TES00000085632019-07-14Assessment of the spatial variability of vegetative status in vineyards using non-destructive sensors: Application of remote and proximal sensing technologies in precision viticultureRey Caramés, ClaraRemote piloted aerial systems (RPAS)chlorophyll fluorescence sensoron-the-goplant phenotypingvegetative growthnitrogenVitis vinifera LRPAS (Remotely Piloted Aerial System oen españolsistemas aéreos pilotados de forma remota)sensor de fluorescencia de la clorofilaen movimientofenotipado vegetalcrecimiento vegetativonitrógenoVitis vinifera LIntroduction: The vegetative status of grapevines influences yield and grape composition. The assessment of the vineyard spatial and temporal variability in precision viticulture requires a large amount of data. Traditional methods are not suitable, as they are time and labour demanding, making the analysis of a high number of samples at different timings not feasible. For this purpose, remote and proximal sensing techniques could be useful for monitoring the vineyards in a reliable, fast and non-destructive way. Objectives: The aim pursued by this research was to assess the spatial and temporal variability of the vegetative status of a vineyard using nondestructive sensors. Towards that end, the usefulness of a remotely piloted aerial system (RPAS) multispectral imagery was tested to assess the vegetative growth of a vineyard. A special focus was set on proximal sensing, especially on a fluorescence sensor used either manually and on-the-go, to determine chlorophyll, flavonol and nitrogen content in grapevine leaves. Materials and methods: A multispectral sensor mounted on a RPAS was employed for monitoring the spatial variability of the vegetative status of a commercial vineyard (Vitis vinifera L.) and the assessment of vegetative parameters, such as leaf area, shoot length and pruning weight, leaf chlorophyll content and nitrogen status. Subsequently, a fluorescence sensor, used manually and mounted on a quad, was used for assessing the leaf chlorophyll, epidermal flavonol and nitrogen content and monitoring the spatial variability of the vineyard vegetative and nutritional status. Results and discussion: The spectral indices derived from RPAS multispectral imagery yielded significant and moderate correlations with pruning weight, secondary shoot length, secondary leaf area, leaf chlorophyll content and nitrogen status. These results indicated its potential to appraise the vineyard vegetative status but also revealed some disadvantages regarding technological and operational factors. Regarding proximal sensing, the handheld fluorescence sensor demonstrated its capability to properly measure the chlorophyll, epidermal flavonols and nitrogen content in grapevine leaves. The best indicators of these vegetative and nutritional components were found to be the fluorescence indices of the whole leaf (adaxial and abaxial). Thanks to the calibration equations provided, the leaf chlorophyll concentration can be obtained from the fluorescence measurements. Concerning the nitrogen status, among all the possible equations of the nitrogen balance index (NBI), the one calculated as the chlorophyll-toflavonol ratio yielded the best evaluation of the nitrogen status of the grapevine. The hand-held fluorescence sensor allowed characterising the spatio-temporal variability of leaf chlorophyll content and nitrogen status along the ripening season. While the nitrogen status showed different spatial variability across the season, leaf chlorophyll content spatial behaviour remained stable. Moreover, the fluorescence sensor adapted to be mounted on a vehicle demonstrated its capability to reliably estimate the chlorophyll, epidermal flavonol and nitrogen content on-the-go in grapevine leaves, and to assess their spatial variability within the vineyard. Conclusions: Remote and proximal sensing have proved to be certainly useful in precision viticulture as they are able to provide a large amount of data in a fast and non-destructive way, overcoming the disadvantages of the classical manual, destructive, laborious methods. Specifically, the fluorescence sensor has shown to be a precise tool to assess xv key vegetative and nutritional parameters in the field. Furthermore, its successful adaptation to operate mounted on a vehicle and perform an onthe- go assessment of the vegetative status of the vineyard is a significant step forward in the current process of sensor integration on mobile platforms and the practical implementation of the precision viticulture techniques.Introducción: El estado vegetativo del viñedo influye en la producción y en la composición de la uva. La estimación de la variabilidad espacial y temporal en viticultura de precisión requiere de una gran cantidad de datos. Los métodos tradicionales no son adecuados, ya que son muy costosos en términos de tiempo y esfuerzo, lo que hace que el análisis de una gran cantidad de muestras en diferentes momentos no sea factible. Con éste fin, la teledetección y la detección próxima podrían ser útiles para monitorizar el viñedo de forma fiable, rápida y no destructiva. Objetivos: El objetivo perseguido en este trabajo de investigación fue estimar la variabilidad espacial y temporal del estado vegetativo del viñedo mediante el uso de sensores no destructivos. Con esta finalidad, se analizaron imágenes multiespectrales tomadas por sistemas aéreos pilotados de forma remota (RPAS) para estimar el crecimiento vegetativo del viñedo. Especial atención se puso en los sistemas de detección próxima, especialmente en el uso de un sensor de fluorescencia, bien manualmente o instalado en un vehículo, para determinar el contenido de clorofila, flavonoles y nitrógeno en las hojas de vid. Materiales y métodos: Se utilizó un sensor multiespectral instalado en un RPAS para monitorizar la variabilidad espacial del estado vegetativo de un viñedo comercial (Vitis vinifera L.) y estimar los parámetros vegetativos: superficie foliar, longitud de pámpano, madera de poda y el contenido foliar de clorofila y nitrógeno. Posteriormente, se empleó un sensor de fluorescencia, tanto de forma manual como instalado en un quad, para estimar el contenido foliar de clorofila, flavonoles y nitrógeno y monitorizar la variabilidad espacial del estado vegetativo y nutricional del viñedo. Resultados y discusión: Los índices derivados de las imágenes multiespectrales de RPAS reportaron correlaciones significativas y moderadas con la madera de poda, la longitud de pámpano secundaria, el área foliar secundaria y el contenido foliar de clorofila y nitrógeno. Estos resultados han mostrado su potencial para estimar el estado vegetativo del viñedo, pero también revelaron algunos inconvenientes relacionados con factores tecnológicos y operacionales. Relacionado con la detección próxima, el sensor de fluorescencia manual ha demostrado su capacidad para medir apropiadamente los contenidos foliares de clorofila, flavonol epidérmico y nitrógeno en vides. Los mejores indicadores de los componentes vegetativos y nutricionales fueron los índices de fluorescencia calculados para la hoja completa (haz y envés). Gracias a las ecuaciones de calibración aportadas, es posible obtener la concentración foliar de clorofila a partir de los índices de fluorescencia. En cuanto a los niveles de nitrógeno, entre todas las posibilidades de calcular el índice de balance de nitrógeno (NBI), el calculado como el ratio clorofila entre flavonol ha sido el que ha aportado la mejor estimación de los niveles de nitrógeno de la vid. El sensor de fluorescencia manual ha permitido caracterizar la variabilidad espacio-temporal del contenido foliar de clorofila y de los niveles de nitrógeno a lo largo del período de maduración. Mientras los niveles de nitrógeno mostraron diferencias en la variabilidad espacial a lo largo de la temporada, el comportamiento espacial del contenido foliar de clorofila se mantuvo estable. Asimismo, el sensor de fluorescencia adaptado para ser instalado en un vehículo, demostró su capacidad para estimar en marcha y de forma fiable, el contenido de clorofila, flavonol y nitrógeno en hojas de vid y estimar su variabilidad espacial en el viñedo. Conclusiones: Las técnicas de teledetección y de detección próxima han demostrado ser muy útiles en viticultura de precisión, dado que son capaces de recopilar un gran número de datos de forma rápida y no destructiva, lo que supone una importante mejora respecto a los métodos manuales clásicos, que resultan destructivos y laboriosos. En especial, el sensor de fluorescencia ha demostrado ser un instrumento muy preciso a la hora de estimar en campo parámetros vegetativos y nutricionales clave. Así mismo, la exitosa adaptación del sensor de fluorescencia para operar instalado en un vehículo en movimiento supone un significativo avance en el actual proceso de integración de sensores en plataformas móviles y la implementación práctica de la viticultura de precisión.Universidad de La Rioja (España)Tardáguila Laso, Javier (Universidad de La Rioja)Diago Santamaría, María Paz (Universidad de La Rioja)2015text (thesis)application/pdfhttps://dialnet.unirioja.es/servlet/oaites?codigo=46013engLICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |