Processing biomedical images for the study of treatments related to neurodegenerative diseases
The study of neuronal cell morphology and function in neurodegenerative disease processes is essential in order to develop suitable treatments. In fact, studies such as the quantification of either synapses or the neuronal density are instrumental in measuring the evolution and the behaviour of neur...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | text (thesis) |
Lenguaje: | eng |
Publicado: |
Universidad de La Rioja (España)
2017
|
Acceso en línea: | https://dialnet.unirioja.es/servlet/oaites?codigo=122711 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai-TES0000022859 |
---|---|
record_format |
dspace |
spelling |
oai-TES00000228592018-10-05Processing biomedical images for the study of treatments related to neurodegenerative diseasesMata Martínez, GadeaThe study of neuronal cell morphology and function in neurodegenerative disease processes is essential in order to develop suitable treatments. In fact, studies such as the quantification of either synapses or the neuronal density are instrumental in measuring the evolution and the behaviour of neurons under the effects of certain physiological conditions. In order to analyse this data, fully automatic methods are required. To this end, we have studied and developed methods inspired by Computational Algebraic Topology and Machine Learning techniques. Notions such as the definition of connected components, or others related to the persistence homology and zigzag persistence theory have been used to compute the synaptic density or to recognise the neuronal structure. In addition, machine learning methods are used to determine where neurons are located in large images and to ascertain which are the best features to describe this kind of cells.El estudio de la morfología y de la funcionalidad de células neuronales en el proceso de enfermedades neurodegenerativas es de alta importancia para desarrollar fármacos y terapias adecuadas. De hecho, estudios como la cuantificación de sinapsis o la densidad neuronal son fundamentales para medir la evolución y el comportamiento de neuronas bajo el efecto de ciertas condiciones fisiológicas. Para el análisis de estos datos se necesitan métodos completamente automatizados. Con esta finalidad, hemos estudiado y desarrollado métodos inspirados en la Topología Algebraíca Computacional y técnicas de aprendizaje automatizado. Nociones como la definición de componente conexa u otras relacionadas con la homología persistente y la teoría de la persistencia zigzag han sido usadas para calcular la densidad sináptica o reconocer la estructura neuronal. Además, se han utilizado métodos de aprendizaje automatizado, para conocer dónde se encuentran las neuronas en imágenes de gran tamaño y para determinar cuáles son las características que mejor describen a este tipo de células.Universidad de La Rioja (España)Morales Fuciños, Miguel (null)Rubio García, Julio (null)2017text (thesis)application/pdfhttps://dialnet.unirioja.es/servlet/oaites?codigo=122711engLICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
institution |
DialNet |
collection |
DialNet |
language |
eng |
description |
The study of neuronal cell morphology and function in neurodegenerative disease processes is essential in order to develop suitable treatments.
In fact, studies such as the quantification of either synapses or the neuronal density are instrumental in measuring the evolution and the behaviour of neurons under the effects of certain physiological conditions.
In order to analyse this data, fully automatic methods are required. To this end, we have studied and developed methods inspired by Computational Algebraic Topology and Machine Learning techniques. Notions such as the definition of connected components, or others related to the persistence homology and zigzag persistence theory have been used to compute the synaptic density or to recognise the neuronal structure. In addition, machine learning methods are used to determine where neurons are located in large images and to ascertain which are the best features to describe this kind of cells. |
author2 |
Morales Fuciños, Miguel (null) |
author_facet |
Morales Fuciños, Miguel (null) Mata Martínez, Gadea |
format |
text (thesis) |
author |
Mata Martínez, Gadea |
spellingShingle |
Mata Martínez, Gadea Processing biomedical images for the study of treatments related to neurodegenerative diseases |
author_sort |
Mata Martínez, Gadea |
title |
Processing biomedical images for the study of treatments related to neurodegenerative diseases |
title_short |
Processing biomedical images for the study of treatments related to neurodegenerative diseases |
title_full |
Processing biomedical images for the study of treatments related to neurodegenerative diseases |
title_fullStr |
Processing biomedical images for the study of treatments related to neurodegenerative diseases |
title_full_unstemmed |
Processing biomedical images for the study of treatments related to neurodegenerative diseases |
title_sort |
processing biomedical images for the study of treatments related to neurodegenerative diseases |
publisher |
Universidad de La Rioja (España) |
publishDate |
2017 |
url |
https://dialnet.unirioja.es/servlet/oaites?codigo=122711 |
work_keys_str_mv |
AT matamartinezgadea processingbiomedicalimagesforthestudyoftreatmentsrelatedtoneurodegenerativediseases |
_version_ |
1718346671285338112 |