The PPLD has advantages over conventional regression methods in application to moderately sized genome-wide association studies.

In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for applicat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Veronica J Vieland, Sang-Cheol Seok
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/00003499008840e299ffa0b2baec2e63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself is relatively rare, this is a setting in which the very large sample sizes generally assembled for GWAS are simply not attainable. For this reason, statistical methods specially adapted for use in small data sets are required. Here we explore the behavior of the TE-PPLD via simulations, comparing the TE-PPLD with Cox Proportional Hazards analysis in the context of small to moderate sample sizes. Our results will help to inform our approach to the DMD study going forward, and they illustrate several respects in which the TE-PPLD, and by extension the original PPLD, offer advantages over regression-based approaches to GWAS in this context.