Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America

ABSTRACT The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Massimiliano S. Tagliamonte, Charles A. Yowell, Maha A. Elbadry, Jacques Boncy, Christian P. Raccurt, Bernard A. Okech, Erica M. Goss, Marco Salemi, John B. Dame
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/0000e17190e246e6b2621356f3ffcae1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0000e17190e246e6b2621356f3ffcae1
record_format dspace
spelling oai:doaj.org-article:0000e17190e246e6b2621356f3ffcae12021-11-15T15:30:58ZGenetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America10.1128/mSphere.00937-202379-5042https://doaj.org/article/0000e17190e246e6b2621356f3ffcae12020-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00937-20https://doaj.org/toc/2379-5042ABSTRACT The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite’s life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America. IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.Massimiliano S. TagliamonteCharles A. YowellMaha A. ElbadryJacques BoncyChristian P. RaccurtBernard A. OkechErica M. GossMarco SalemiJohn B. DameAmerican Society for MicrobiologyarticleHaitiPlasmodium falciparumadaptive mutationsevolutionary biologymalariaphylogeneticsMicrobiologyQR1-502ENmSphere, Vol 5, Iss 5 (2020)
institution DOAJ
collection DOAJ
language EN
topic Haiti
Plasmodium falciparum
adaptive mutations
evolutionary biology
malaria
phylogenetics
Microbiology
QR1-502
spellingShingle Haiti
Plasmodium falciparum
adaptive mutations
evolutionary biology
malaria
phylogenetics
Microbiology
QR1-502
Massimiliano S. Tagliamonte
Charles A. Yowell
Maha A. Elbadry
Jacques Boncy
Christian P. Raccurt
Bernard A. Okech
Erica M. Goss
Marco Salemi
John B. Dame
Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
description ABSTRACT The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite’s life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America. IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.
format article
author Massimiliano S. Tagliamonte
Charles A. Yowell
Maha A. Elbadry
Jacques Boncy
Christian P. Raccurt
Bernard A. Okech
Erica M. Goss
Marco Salemi
John B. Dame
author_facet Massimiliano S. Tagliamonte
Charles A. Yowell
Maha A. Elbadry
Jacques Boncy
Christian P. Raccurt
Bernard A. Okech
Erica M. Goss
Marco Salemi
John B. Dame
author_sort Massimiliano S. Tagliamonte
title Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
title_short Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
title_full Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
title_fullStr Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
title_full_unstemmed Genetic Markers of Adaptation of <named-content content-type="genus-species">Plasmodium falciparum</named-content> to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America
title_sort genetic markers of adaptation of <named-content content-type="genus-species">plasmodium falciparum</named-content> to transmission by american vectors identified in the genomes of parasites from haiti and south america
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/0000e17190e246e6b2621356f3ffcae1
work_keys_str_mv AT massimilianostagliamonte geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT charlesayowell geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT mahaaelbadry geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT jacquesboncy geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT christianpraccurt geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT bernardaokech geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT ericamgoss geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT marcosalemi geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
AT johnbdame geneticmarkersofadaptationofnamedcontentcontenttypegenusspeciesplasmodiumfalciparumnamedcontenttotransmissionbyamericanvectorsidentifiedinthegenomesofparasitesfromhaitiandsouthamerica
_version_ 1718427865686474752