3D Octave and 2D Vanilla Mixed Convolutional Neural Network for Hyperspectral Image Classification with Limited Samples
Owing to the outstanding feature extraction capability, convolutional neural networks (CNNs) have been widely applied in hyperspectral image (HSI) classification problems and have achieved an impressive performance. However, it is well known that 2D convolution suffers from the absent consideration...
Guardado en:
Autores principales: | Yuchao Feng, Jianwei Zheng, Mengjie Qin, Cong Bai, Jinglin Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/000accfbcf8a49019efa500682411c25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
por: Dongxu Liu, et al.
Publicado: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
A 3D Compensation Method for the Systematic Errors of Kinect V2
por: Chang Li, et al.
Publicado: (2021) -
Integration of 2D and TLS Data Using GIS to Create a Database for the Paphos Agora Project
por: Paweł Ćwiąkała, et al.
Publicado: (2015)