A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkh...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00168e96cb8745618b8b6414f25fe239 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:00168e96cb8745618b8b6414f25fe239 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:00168e96cb8745618b8b6414f25fe2392021-11-30T14:26:42ZA Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma2235-298810.3389/fcimb.2021.751795https://doaj.org/article/00168e96cb8745618b8b6414f25fe2392021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fcimb.2021.751795/fullhttps://doaj.org/toc/2235-2988Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibacterium, and Ruminococcus_1 (B-F-R) for CCA early diagnosis. A case-control study was conducted to enroll 53 CCA patients, 47 cholelithiasis patients, and 40 healthy controls. The feces samples and clinical information of participants were collected in the same period. The gut microbiota and its diversity of individuals were accessed with 16S rDNA sequencing, and the gut microbiota profile was evaluated according to microbiota diversity. Finally, four enriched genera in the CCA group (genera Bacteroides, Muribaculaceae_unclassified, Muribaculum, and Alistipes) and eight enriched genera in the cholelithiasis group (genera Bifidobacterium, Streptococcus, Agathobacter, Ruminococcus_gnavus_group, Faecalibacterium, Subdoligranulum, Collinsella, Escherichia-Shigella) constitute an overall different microbial community composition (P = 0.001). The B-F-R genera model with better diagnostic value than carbohydrate antigen 19-9 (CA19-9) was identified by random forest and Statistical Analysis of Metagenomic Profiles (STAMP) to distinguish CCA patients from healthy controls [area under the curve (AUC) = 0.973, 95% CI = 0.932–1.0]. Moreover, the correlative analysis found that genera Burkholderia-Caballeronia-Paraburkholderia were positively correlated with body mass index (BMI). The significantly different microbiomes between cholelithiasis and CCA were found via principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe), and Venn diagram and LEfSe were utilized to identify four genera by comparing microbial compositions among patients with malignant obstructive jaundice (MOJ-Y) or not (MOJ-N). In brief, our findings suggest that gut microbiota vary from benign and malignant hepatobiliary diseases to healthy people and provide evidence supporting gut microbiota to be a non-invasive biomarker for the early diagnosis of CCA.Tan ZhangTan ZhangSina ZhangSina ZhangChen JinZixia LinZixia LinTuo DengTuo DengXiaozai XieXiaozai XieLiming DengLiming DengXueyan LiJun MaXiwei DingYaming LiuYunfeng ShanYunfeng ShanZhengping YuZhengping YuYi WangGang ChenGang ChenJialiang LiJialiang LiFrontiers Media S.A.articlecholangiocarcinomagut microbiomenon-invasive diagnosismalignant obstructive jaundiceBMIMicrobiologyQR1-502ENFrontiers in Cellular and Infection Microbiology, Vol 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cholangiocarcinoma gut microbiome non-invasive diagnosis malignant obstructive jaundice BMI Microbiology QR1-502 |
spellingShingle |
cholangiocarcinoma gut microbiome non-invasive diagnosis malignant obstructive jaundice BMI Microbiology QR1-502 Tan Zhang Tan Zhang Sina Zhang Sina Zhang Chen Jin Zixia Lin Zixia Lin Tuo Deng Tuo Deng Xiaozai Xie Xiaozai Xie Liming Deng Liming Deng Xueyan Li Jun Ma Xiwei Ding Yaming Liu Yunfeng Shan Yunfeng Shan Zhengping Yu Zhengping Yu Yi Wang Gang Chen Gang Chen Jialiang Li Jialiang Li A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
description |
Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibacterium, and Ruminococcus_1 (B-F-R) for CCA early diagnosis. A case-control study was conducted to enroll 53 CCA patients, 47 cholelithiasis patients, and 40 healthy controls. The feces samples and clinical information of participants were collected in the same period. The gut microbiota and its diversity of individuals were accessed with 16S rDNA sequencing, and the gut microbiota profile was evaluated according to microbiota diversity. Finally, four enriched genera in the CCA group (genera Bacteroides, Muribaculaceae_unclassified, Muribaculum, and Alistipes) and eight enriched genera in the cholelithiasis group (genera Bifidobacterium, Streptococcus, Agathobacter, Ruminococcus_gnavus_group, Faecalibacterium, Subdoligranulum, Collinsella, Escherichia-Shigella) constitute an overall different microbial community composition (P = 0.001). The B-F-R genera model with better diagnostic value than carbohydrate antigen 19-9 (CA19-9) was identified by random forest and Statistical Analysis of Metagenomic Profiles (STAMP) to distinguish CCA patients from healthy controls [area under the curve (AUC) = 0.973, 95% CI = 0.932–1.0]. Moreover, the correlative analysis found that genera Burkholderia-Caballeronia-Paraburkholderia were positively correlated with body mass index (BMI). The significantly different microbiomes between cholelithiasis and CCA were found via principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe), and Venn diagram and LEfSe were utilized to identify four genera by comparing microbial compositions among patients with malignant obstructive jaundice (MOJ-Y) or not (MOJ-N). In brief, our findings suggest that gut microbiota vary from benign and malignant hepatobiliary diseases to healthy people and provide evidence supporting gut microbiota to be a non-invasive biomarker for the early diagnosis of CCA. |
format |
article |
author |
Tan Zhang Tan Zhang Sina Zhang Sina Zhang Chen Jin Zixia Lin Zixia Lin Tuo Deng Tuo Deng Xiaozai Xie Xiaozai Xie Liming Deng Liming Deng Xueyan Li Jun Ma Xiwei Ding Yaming Liu Yunfeng Shan Yunfeng Shan Zhengping Yu Zhengping Yu Yi Wang Gang Chen Gang Chen Jialiang Li Jialiang Li |
author_facet |
Tan Zhang Tan Zhang Sina Zhang Sina Zhang Chen Jin Zixia Lin Zixia Lin Tuo Deng Tuo Deng Xiaozai Xie Xiaozai Xie Liming Deng Liming Deng Xueyan Li Jun Ma Xiwei Ding Yaming Liu Yunfeng Shan Yunfeng Shan Zhengping Yu Zhengping Yu Yi Wang Gang Chen Gang Chen Jialiang Li Jialiang Li |
author_sort |
Tan Zhang |
title |
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
title_short |
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
title_full |
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
title_fullStr |
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
title_full_unstemmed |
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma |
title_sort |
predictive model based on the gut microbiota improves the diagnostic effect in patients with cholangiocarcinoma |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/00168e96cb8745618b8b6414f25fe239 |
work_keys_str_mv |
AT tanzhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tanzhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT sinazhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT sinazhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT chenjin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zixialin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zixialin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tuodeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tuodeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiaozaixie apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiaozaixie apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT limingdeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT limingdeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xueyanli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT junma apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiweiding apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yamingliu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yunfengshan apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yunfengshan apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zhengpingyu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zhengpingyu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yiwang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT gangchen apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT gangchen apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT jialiangli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT jialiangli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tanzhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tanzhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT sinazhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT sinazhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT chenjin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zixialin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zixialin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tuodeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT tuodeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiaozaixie predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiaozaixie predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT limingdeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT limingdeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xueyanli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT junma predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT xiweiding predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yamingliu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yunfengshan predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yunfengshan predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zhengpingyu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT zhengpingyu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT yiwang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT gangchen predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT gangchen predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT jialiangli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma AT jialiangli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma |
_version_ |
1718406482244927488 |