A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma

Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tan Zhang, Sina Zhang, Chen Jin, Zixia Lin, Tuo Deng, Xiaozai Xie, Liming Deng, Xueyan Li, Jun Ma, Xiwei Ding, Yaming Liu, Yunfeng Shan, Zhengping Yu, Yi Wang, Gang Chen, Jialiang Li
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
BMI
Acceso en línea:https://doaj.org/article/00168e96cb8745618b8b6414f25fe239
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:00168e96cb8745618b8b6414f25fe239
record_format dspace
spelling oai:doaj.org-article:00168e96cb8745618b8b6414f25fe2392021-11-30T14:26:42ZA Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma2235-298810.3389/fcimb.2021.751795https://doaj.org/article/00168e96cb8745618b8b6414f25fe2392021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fcimb.2021.751795/fullhttps://doaj.org/toc/2235-2988Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibacterium, and Ruminococcus_1 (B-F-R) for CCA early diagnosis. A case-control study was conducted to enroll 53 CCA patients, 47 cholelithiasis patients, and 40 healthy controls. The feces samples and clinical information of participants were collected in the same period. The gut microbiota and its diversity of individuals were accessed with 16S rDNA sequencing, and the gut microbiota profile was evaluated according to microbiota diversity. Finally, four enriched genera in the CCA group (genera Bacteroides, Muribaculaceae_unclassified, Muribaculum, and Alistipes) and eight enriched genera in the cholelithiasis group (genera Bifidobacterium, Streptococcus, Agathobacter, Ruminococcus_gnavus_group, Faecalibacterium, Subdoligranulum, Collinsella, Escherichia-Shigella) constitute an overall different microbial community composition (P = 0.001). The B-F-R genera model with better diagnostic value than carbohydrate antigen 19-9 (CA19-9) was identified by random forest and Statistical Analysis of Metagenomic Profiles (STAMP) to distinguish CCA patients from healthy controls [area under the curve (AUC) = 0.973, 95% CI = 0.932–1.0]. Moreover, the correlative analysis found that genera Burkholderia-Caballeronia-Paraburkholderia were positively correlated with body mass index (BMI). The significantly different microbiomes between cholelithiasis and CCA were found via principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe), and Venn diagram and LEfSe were utilized to identify four genera by comparing microbial compositions among patients with malignant obstructive jaundice (MOJ-Y) or not (MOJ-N). In brief, our findings suggest that gut microbiota vary from benign and malignant hepatobiliary diseases to healthy people and provide evidence supporting gut microbiota to be a non-invasive biomarker for the early diagnosis of CCA.Tan ZhangTan ZhangSina ZhangSina ZhangChen JinZixia LinZixia LinTuo DengTuo DengXiaozai XieXiaozai XieLiming DengLiming DengXueyan LiJun MaXiwei DingYaming LiuYunfeng ShanYunfeng ShanZhengping YuZhengping YuYi WangGang ChenGang ChenJialiang LiJialiang LiFrontiers Media S.A.articlecholangiocarcinomagut microbiomenon-invasive diagnosismalignant obstructive jaundiceBMIMicrobiologyQR1-502ENFrontiers in Cellular and Infection Microbiology, Vol 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic cholangiocarcinoma
gut microbiome
non-invasive diagnosis
malignant obstructive jaundice
BMI
Microbiology
QR1-502
spellingShingle cholangiocarcinoma
gut microbiome
non-invasive diagnosis
malignant obstructive jaundice
BMI
Microbiology
QR1-502
Tan Zhang
Tan Zhang
Sina Zhang
Sina Zhang
Chen Jin
Zixia Lin
Zixia Lin
Tuo Deng
Tuo Deng
Xiaozai Xie
Xiaozai Xie
Liming Deng
Liming Deng
Xueyan Li
Jun Ma
Xiwei Ding
Yaming Liu
Yunfeng Shan
Yunfeng Shan
Zhengping Yu
Zhengping Yu
Yi Wang
Gang Chen
Gang Chen
Jialiang Li
Jialiang Li
A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
description Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibacterium, and Ruminococcus_1 (B-F-R) for CCA early diagnosis. A case-control study was conducted to enroll 53 CCA patients, 47 cholelithiasis patients, and 40 healthy controls. The feces samples and clinical information of participants were collected in the same period. The gut microbiota and its diversity of individuals were accessed with 16S rDNA sequencing, and the gut microbiota profile was evaluated according to microbiota diversity. Finally, four enriched genera in the CCA group (genera Bacteroides, Muribaculaceae_unclassified, Muribaculum, and Alistipes) and eight enriched genera in the cholelithiasis group (genera Bifidobacterium, Streptococcus, Agathobacter, Ruminococcus_gnavus_group, Faecalibacterium, Subdoligranulum, Collinsella, Escherichia-Shigella) constitute an overall different microbial community composition (P = 0.001). The B-F-R genera model with better diagnostic value than carbohydrate antigen 19-9 (CA19-9) was identified by random forest and Statistical Analysis of Metagenomic Profiles (STAMP) to distinguish CCA patients from healthy controls [area under the curve (AUC) = 0.973, 95% CI = 0.932–1.0]. Moreover, the correlative analysis found that genera Burkholderia-Caballeronia-Paraburkholderia were positively correlated with body mass index (BMI). The significantly different microbiomes between cholelithiasis and CCA were found via principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe), and Venn diagram and LEfSe were utilized to identify four genera by comparing microbial compositions among patients with malignant obstructive jaundice (MOJ-Y) or not (MOJ-N). In brief, our findings suggest that gut microbiota vary from benign and malignant hepatobiliary diseases to healthy people and provide evidence supporting gut microbiota to be a non-invasive biomarker for the early diagnosis of CCA.
format article
author Tan Zhang
Tan Zhang
Sina Zhang
Sina Zhang
Chen Jin
Zixia Lin
Zixia Lin
Tuo Deng
Tuo Deng
Xiaozai Xie
Xiaozai Xie
Liming Deng
Liming Deng
Xueyan Li
Jun Ma
Xiwei Ding
Yaming Liu
Yunfeng Shan
Yunfeng Shan
Zhengping Yu
Zhengping Yu
Yi Wang
Gang Chen
Gang Chen
Jialiang Li
Jialiang Li
author_facet Tan Zhang
Tan Zhang
Sina Zhang
Sina Zhang
Chen Jin
Zixia Lin
Zixia Lin
Tuo Deng
Tuo Deng
Xiaozai Xie
Xiaozai Xie
Liming Deng
Liming Deng
Xueyan Li
Jun Ma
Xiwei Ding
Yaming Liu
Yunfeng Shan
Yunfeng Shan
Zhengping Yu
Zhengping Yu
Yi Wang
Gang Chen
Gang Chen
Jialiang Li
Jialiang Li
author_sort Tan Zhang
title A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
title_short A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
title_full A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
title_fullStr A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
title_full_unstemmed A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma
title_sort predictive model based on the gut microbiota improves the diagnostic effect in patients with cholangiocarcinoma
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/00168e96cb8745618b8b6414f25fe239
work_keys_str_mv AT tanzhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tanzhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT sinazhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT sinazhang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT chenjin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zixialin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zixialin apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tuodeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tuodeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiaozaixie apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiaozaixie apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT limingdeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT limingdeng apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xueyanli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT junma apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiweiding apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yamingliu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yunfengshan apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yunfengshan apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zhengpingyu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zhengpingyu apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yiwang apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT gangchen apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT gangchen apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT jialiangli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT jialiangli apredictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tanzhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tanzhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT sinazhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT sinazhang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT chenjin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zixialin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zixialin predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tuodeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT tuodeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiaozaixie predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiaozaixie predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT limingdeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT limingdeng predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xueyanli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT junma predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT xiweiding predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yamingliu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yunfengshan predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yunfengshan predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zhengpingyu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT zhengpingyu predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT yiwang predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT gangchen predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT gangchen predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT jialiangli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
AT jialiangli predictivemodelbasedonthegutmicrobiotaimprovesthediagnosticeffectinpatientswithcholangiocarcinoma
_version_ 1718406482244927488