High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli
Understanding evolutionary constraints in antibiotic resistance is crucial for prediction and control. Here, the authors use high-throughput laboratory evolution of Escherichia coli alongside machine learning to identify trade-off relationships associated with drug resistance.
Guardado en:
Autores principales: | Tomoya Maeda, Junichiro Iwasawa, Hazuki Kotani, Natsue Sakata, Masako Kawada, Takaaki Horinouchi, Aki Sakai, Kumi Tanabe, Chikara Furusawa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/001bafcb32844840b1bb86e1b61340bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Laboratory evolution of Mycobacterium on agar plates for analysis of resistance acquisition and drug sensitivity profiles
por: Tomoya Maeda, et al.
Publicado: (2021) -
Morphological change of coiled bacterium Spirosoma linguale with acquisition of β-lactam resistance
por: Tomoya Maeda, et al.
Publicado: (2021) -
Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro
por: Mari Yoshida, et al.
Publicado: (2017) -
Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints
por: Andres Gomez, et al.
Publicado: (2019) -
Drug resistance missense mutations in cancer are subject to evolutionary constraints.
por: Ran Friedman
Publicado: (2013)