Predicting Urban Reservoir Levels Using Statistical Learning Techniques
Abstract Urban water supplies are critical to the growth of the city and the wellbeing of its citizens. However, these supplies can be vulnerable to hydrological extremes, such as droughts and floods, especially if they are the main source of water for the city. Maintaining these supplies and prepar...
Guardado en:
Autores principales: | Renee Obringer, Roshanak Nateghi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/002b5383d84f4c929939c7f061ebee37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictive modeling for peri-implantitis by using machine learning techniques
por: Tomoaki Mameno, et al.
Publicado: (2021) -
Predicting cognitive impairment in outpatients with epilepsy using machine learning techniques
por: Feng Lin, et al.
Publicado: (2021) -
Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques
por: Nurul Azam Mohd Salim, et al.
Publicado: (2021) -
The critical role of humidity in modeling summer electricity demand across the United States
por: Debora Maia-Silva, et al.
Publicado: (2020) -
Simulating self-learning in photorefractive optical reservoir computers
por: Floris Laporte, et al.
Publicado: (2021)