Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites
Abstract Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target sub...
Guardado en:
Autores principales: | Yanan Wang, Jiangning Song, Tatiana T. Marquez-Lago, André Leier, Chen Li, Trevor Lithgow, Geoffrey I. Webb, Hong-Bin Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/002cf20c31204fe68fab2fc87b963dab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
por: Jiangning Song, et al.
Publicado: (2017) -
Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site
por: Laura E. Rosen, et al.
Publicado: (2019) -
Matrix metalloprotease 9 and remodeling after myocardial infarction
por: M. G. Shurygin, et al.
Publicado: (2013) -
Cysteine Cathepsins and Matrix Metalloproteases Among Breast Cancer Patients
por: Tsegaye S, et al.
Publicado: (2021) -
Computational synthesis of substrates by crystal cleavage
por: Joshua T. Paul, et al.
Publicado: (2021)