Risk factor assessments of temporomandibular disorders via machine learning
Abstract This study aimed to use artificial intelligence to determine whether biological and psychosocial factors, such as stress, socioeconomic status, and working conditions, were major risk factors for temporomandibular disorders (TMDs). Data were retrieved from the fourth Korea National Health a...
Guardado en:
Autores principales: | Kwang-Sig Lee, Nayansi Jha, Yoon-Ji Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/002fd6d49c5a4194905590ef993de50c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enterprise Risk Assessment Based on Machine Learning
por: Boning Huang, et al.
Publicado: (2021) -
Machine learning prediction of dropping out of outpatients with alcohol use disorders.
por: So Jin Park, et al.
Publicado: (2021) -
Electroacupuncture for Temporomandibular Disorders: A Systematic Review of Randomized Controlled Trials
por: Soo-Hyun Sung, et al.
Publicado: (2021) -
Effect of photobiomodulation therapy on painful temporomandibular disorders
por: Adila Aisaiti, et al.
Publicado: (2021) -
Morphological Characteristics of the Temporomandibular Joint Articular Surfaces in Patients with Temporomandibular Disorders
por: Alves,N, et al.
Publicado: (2013)