A machine learning approach predicts future risk to suicidal ideation from social media data
Abstract Machine learning analysis of social media data represents a promising way to capture longitudinal environmental influences contributing to individual risk for suicidal thoughts and behaviors. Our objective was to generate an algorithm termed “Suicide Artificial Intelligence Prediction Heuri...
Guardado en:
Autores principales: | Arunima Roy, Katerina Nikolitch, Rachel McGinn, Safiya Jinah, William Klement, Zachary A. Kaminsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/003b9572f6104942a46ea1e61f883c2d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Viktor Tóth, et al.
Publicado: (2020) -
The future of digital health with federated learning
por: Nicola Rieke, et al.
Publicado: (2020) -
Second opinion needed: communicating uncertainty in medical machine learning
por: Benjamin Kompa, et al.
Publicado: (2021) -
Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
por: Christine M. Cutillo, et al.
Publicado: (2020) -
Beyond performance metrics: modeling outcomes and cost for clinical machine learning
por: James A. Diao, et al.
Publicado: (2021)