Mapping temporal-network percolation to weighted, static event graphs

Abstract The dynamics of diffusion-like processes on temporal networks are influenced by correlations in the times of contacts. This influence is particularly strong for processes where the spreading agent has a limited lifetime at nodes: disease spreading (recovery time), diffusion of rumors (lifet...

Full description

Saved in:
Bibliographic Details
Main Authors: Mikko Kivelä, Jordan Cambe, Jari Saramäki, Márton Karsai
Format: article
Language:EN
Published: Nature Portfolio 2018
Subjects:
R
Q
Online Access:https://doaj.org/article/0050aa9f85b04147b65fe35edf21a5e5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The dynamics of diffusion-like processes on temporal networks are influenced by correlations in the times of contacts. This influence is particularly strong for processes where the spreading agent has a limited lifetime at nodes: disease spreading (recovery time), diffusion of rumors (lifetime of information), and passenger routing (maximum acceptable time between transfers). We introduce weighted event graphs as a powerful and fast framework for studying connectivity determined by time-respecting paths where the allowed waiting times between contacts have an upper limit. We study percolation on the weighted event graphs and in the underlying temporal networks, with simulated and real-world networks. We show that this type of temporal-network percolation is analogous to directed percolation, and that it can be characterized by multiple order parameters.