Integrative multiomics-histopathology analysis for breast cancer classification
Abstract Histopathologic evaluation of biopsy slides is a critical step in diagnosing and subtyping breast cancers. However, the connections between histology and multi-omics status have never been systematically explored or interpreted. We developed weakly supervised deep learning models over hemat...
Guardado en:
Autores principales: | Yasha Ektefaie, William Yuan, Deborah A. Dillon, Nancy U. Lin, Jeffrey A. Golden, Isaac S. Kohane, Kun-Hsing Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0054a716bf894cfeb760d0ff078ec507 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correlation of X-ray diffraction signatures of breast tissue and their histopathological classification
por: Robert M. Moss, et al.
Publicado: (2017) -
Defining super-enhancer landscape in triple-negative breast cancer by multiomic profiling
por: Hao Huang, et al.
Publicado: (2021) -
A proteomics sample metadata representation for multiomics integration and big data analysis
por: Chengxin Dai, et al.
Publicado: (2021) -
Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
por: Zhongyi Han, et al.
Publicado: (2017) -
Tendon and multiomics: advantages, advances, and opportunities
por: Paula Sarmiento, et al.
Publicado: (2021)