Multidimensional human dynamics in mobile phone communications.

In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication medi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christian Quadri, Matteo Zignani, Lorenzo Capra, Sabrina Gaito, Gian Paolo Rossi
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/005b27e59381408f8f8c008f57be0f64
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication media is considered a key factor in understanding the formation of the today's information society. So far, all previous research on user communication behavior has focused on a sole communication activity. In this paper we move forward another step on this research path by performing a multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user temporal communication behavior in the interplay between the two complementary communication media, text messages and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest case, and offers empirical evidence of their nature by following the combined phone call/text message communication patterns of approximately one million people over three-month period. This quantitative approach enables the design of a generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions, prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process.