A Wilcoxon–Mann–Whitney Test for Latent Variables

We propose an extension of the Wilcoxon–Mann–Whitney test to compare two groups when the outcome variable is latent. We empirically demonstrate that the test can have superior power properties relative to tests based on Structural Equation Modeling for a variety of settings. In addition, several oth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heidelinde Dehaene, Jan De Neve, Yves Rosseel
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/005f20966c5e4b7e980e8f55682651b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:005f20966c5e4b7e980e8f55682651b2
record_format dspace
spelling oai:doaj.org-article:005f20966c5e4b7e980e8f55682651b22021-11-15T16:31:56ZA Wilcoxon–Mann–Whitney Test for Latent Variables1664-107810.3389/fpsyg.2021.754898https://doaj.org/article/005f20966c5e4b7e980e8f55682651b22021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpsyg.2021.754898/fullhttps://doaj.org/toc/1664-1078We propose an extension of the Wilcoxon–Mann–Whitney test to compare two groups when the outcome variable is latent. We empirically demonstrate that the test can have superior power properties relative to tests based on Structural Equation Modeling for a variety of settings. In addition, several other advantages of the Wilcoxon–Mann–Whitney test are retained such as robustness to outliers and good small sample performance. We demonstrate the proposed methodology on a case study.Heidelinde DehaeneJan De NeveYves RosseelFrontiers Media S.A.articlerank testmeasurement errorindicatorsrobustnessnonparametric inferencegroup comparisonPsychologyBF1-990ENFrontiers in Psychology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic rank test
measurement error
indicators
robustness
nonparametric inference
group comparison
Psychology
BF1-990
spellingShingle rank test
measurement error
indicators
robustness
nonparametric inference
group comparison
Psychology
BF1-990
Heidelinde Dehaene
Jan De Neve
Yves Rosseel
A Wilcoxon–Mann–Whitney Test for Latent Variables
description We propose an extension of the Wilcoxon–Mann–Whitney test to compare two groups when the outcome variable is latent. We empirically demonstrate that the test can have superior power properties relative to tests based on Structural Equation Modeling for a variety of settings. In addition, several other advantages of the Wilcoxon–Mann–Whitney test are retained such as robustness to outliers and good small sample performance. We demonstrate the proposed methodology on a case study.
format article
author Heidelinde Dehaene
Jan De Neve
Yves Rosseel
author_facet Heidelinde Dehaene
Jan De Neve
Yves Rosseel
author_sort Heidelinde Dehaene
title A Wilcoxon–Mann–Whitney Test for Latent Variables
title_short A Wilcoxon–Mann–Whitney Test for Latent Variables
title_full A Wilcoxon–Mann–Whitney Test for Latent Variables
title_fullStr A Wilcoxon–Mann–Whitney Test for Latent Variables
title_full_unstemmed A Wilcoxon–Mann–Whitney Test for Latent Variables
title_sort wilcoxon–mann–whitney test for latent variables
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/005f20966c5e4b7e980e8f55682651b2
work_keys_str_mv AT heidelindedehaene awilcoxonmannwhitneytestforlatentvariables
AT jandeneve awilcoxonmannwhitneytestforlatentvariables
AT yvesrosseel awilcoxonmannwhitneytestforlatentvariables
AT heidelindedehaene wilcoxonmannwhitneytestforlatentvariables
AT jandeneve wilcoxonmannwhitneytestforlatentvariables
AT yvesrosseel wilcoxonmannwhitneytestforlatentvariables
_version_ 1718426884277010432