Krishnapriyan, A. S., Montoya, J., Haranczyk, M., Hummelshøj, J., & Morozov, D. (2021). Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks. Nature Portfolio.
Chicago Style (17th ed.) CitationKrishnapriyan, Aditi S., Joseph Montoya, Maciej Haranczyk, Jens Hummelshøj, and Dmitriy Morozov. Machine Learning with Persistent Homology and Chemical Word Embeddings Improves Prediction Accuracy and Interpretability in Metal-organic Frameworks. Nature Portfolio, 2021.
MLA (8th ed.) CitationKrishnapriyan, Aditi S., et al. Machine Learning with Persistent Homology and Chemical Word Embeddings Improves Prediction Accuracy and Interpretability in Metal-organic Frameworks. Nature Portfolio, 2021.