Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
Abstract Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generat...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/00a270034e4b4f5cb9d506b1c33ddda6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|