Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks

Abstract Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aditi S. Krishnapriyan, Joseph Montoya, Maciej Haranczyk, Jens Hummelshøj, Dmitriy Morozov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/00a270034e4b4f5cb9d506b1c33ddda6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!