Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
Abstract Machine learning has emerged as a powerful approach in materials discovery. Its major challenge is selecting features that create interpretable representations of materials, useful across multiple prediction tasks. We introduce an end-to-end machine learning model that automatically generat...
Guardado en:
Autores principales: | Aditi S. Krishnapriyan, Joseph Montoya, Maciej Haranczyk, Jens Hummelshøj, Dmitriy Morozov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00a270034e4b4f5cb9d506b1c33ddda6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Seyed Mohamad Moosavi, et al.
Publicado: (2019) -
A deep learning framework combined with word embedding to identify DNA replication origins
por: Feng Wu, et al.
Publicado: (2021) -
Measuring novelty in science with word embedding.
por: Sotaro Shibayama, et al.
Publicado: (2021) -
Improving sentiment analysis accuracy with emoji embedding
por: Chuchu Liu, et al.
Publicado: (2021) -
Some Yoruba quantifier words and semantic interpretation
por: Nike S. Lawal
Publicado: (1986)