Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms
Wheat lodging is a negative factor affecting yield production. Obtaining timely and accurate wheat lodging information is critical. Using unmanned aerial systems (UASs) images for wheat lodging detection is a relatively new approach, in which researchers usually apply a manual method for dataset gen...
Enregistré dans:
Auteurs principaux: | Paulo FLORES, ZHANG Zhao |
---|---|
Format: | article |
Langue: | EN ZH |
Publié: |
Editorial Office of Smart Agriculture
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/00a35048d7b2405ebcdad58abc6de4ff |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
par: Sungjin Lee, et autres
Publié: (2021) -
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
par: Yi Xie, et autres
Publié: (2021) -
Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion
par: Adnan Noor Shah, et autres
Publié: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
par: Xiangui Xiao, et autres
Publié: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
par: Md Mahibul Hasan, et autres
Publié: (2021)