Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms
Wheat lodging is a negative factor affecting yield production. Obtaining timely and accurate wheat lodging information is critical. Using unmanned aerial systems (UASs) images for wheat lodging detection is a relatively new approach, in which researchers usually apply a manual method for dataset gen...
Guardado en:
Autores principales: | Paulo FLORES, ZHANG Zhao |
---|---|
Formato: | article |
Lenguaje: | EN ZH |
Publicado: |
Editorial Office of Smart Agriculture
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00a35048d7b2405ebcdad58abc6de4ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
por: Sungjin Lee, et al.
Publicado: (2021) -
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
por: Yi Xie, et al.
Publicado: (2021) -
Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion
por: Adnan Noor Shah, et al.
Publicado: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
por: Xiangui Xiao, et al.
Publicado: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
por: Md Mahibul Hasan, et al.
Publicado: (2021)