Part‐level attention networks for cross‐domain person re‐identification
Abstract Person re‐identification (Re‐ID) is in significant demand for intelligent security and single or multiple‐target tracking. However, there are issues in the person Re‐ID tasks, such as sharp decline in cross‐data sets detection accuracy, poor generalization and cross‐domain ability of the mo...
Guardado en:
Autores principales: | Qun Zhao, Nisuo Du, Zhi Ouyang, Ning Kang, Ziyan Liu, Xu Wang, Qing He, Yiling Xu, Shichun Ge, Jingkuan Song |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00aded90e8004048b737670ac3b8d9d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021) -
Multiple object tracking based on multi‐task learning with strip attention
por: Yaoye Song, et al.
Publicado: (2021) -
CA‐PMG: Channel attention and progressive multi‐granularity training network for fine‐grained visual classification
por: Peipei Zhao, et al.
Publicado: (2021) -
Class structure‐aware adversarial loss for cross‐domain human action recognition
por: Wanjun Chen, et al.
Publicado: (2021) -
Adaptive colour restoration and detail retention for image enhancement
por: Kangjian He, et al.
Publicado: (2021)