MVP predicts the pathogenicity of missense variants by deep learning

Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmenta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hongjian Qi, Haicang Zhang, Yige Zhao, Chen Chen, John J. Long, Wendy K. Chung, Yongtao Guan, Yufeng Shen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmental disorders.