MVP predicts the pathogenicity of missense variants by deep learning

Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmenta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hongjian Qi, Haicang Zhang, Yige Zhao, Chen Chen, John J. Long, Wendy K. Chung, Yongtao Guan, Yufeng Shen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:00b2a98c75c843c688e0cc486648e40e
record_format dspace
spelling oai:doaj.org-article:00b2a98c75c843c688e0cc486648e40e2021-12-02T10:49:21ZMVP predicts the pathogenicity of missense variants by deep learning10.1038/s41467-020-20847-02041-1723https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20847-0https://doaj.org/toc/2041-1723Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmental disorders.Hongjian QiHaicang ZhangYige ZhaoChen ChenJohn J. LongWendy K. ChungYongtao GuanYufeng ShenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Hongjian Qi
Haicang Zhang
Yige Zhao
Chen Chen
John J. Long
Wendy K. Chung
Yongtao Guan
Yufeng Shen
MVP predicts the pathogenicity of missense variants by deep learning
description Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmental disorders.
format article
author Hongjian Qi
Haicang Zhang
Yige Zhao
Chen Chen
John J. Long
Wendy K. Chung
Yongtao Guan
Yufeng Shen
author_facet Hongjian Qi
Haicang Zhang
Yige Zhao
Chen Chen
John J. Long
Wendy K. Chung
Yongtao Guan
Yufeng Shen
author_sort Hongjian Qi
title MVP predicts the pathogenicity of missense variants by deep learning
title_short MVP predicts the pathogenicity of missense variants by deep learning
title_full MVP predicts the pathogenicity of missense variants by deep learning
title_fullStr MVP predicts the pathogenicity of missense variants by deep learning
title_full_unstemmed MVP predicts the pathogenicity of missense variants by deep learning
title_sort mvp predicts the pathogenicity of missense variants by deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e
work_keys_str_mv AT hongjianqi mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT haicangzhang mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT yigezhao mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT chenchen mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT johnjlong mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT wendykchung mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT yongtaoguan mvppredictsthepathogenicityofmissensevariantsbydeeplearning
AT yufengshen mvppredictsthepathogenicityofmissensevariantsbydeeplearning
_version_ 1718396568041684992