MVP predicts the pathogenicity of missense variants by deep learning
Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmenta...
Enregistré dans:
Auteurs principaux: | Hongjian Qi, Haicang Zhang, Yige Zhao, Chen Chen, John J. Long, Wendy K. Chung, Yongtao Guan, Yufeng Shen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The cryo-EM structure of the SNX–BAR Mvp1 tetramer
par: Dapeng Sun, et autres
Publié: (2020) -
Missense variant contribution to USP9X-female syndrome
par: Lachlan A. Jolly, et autres
Publié: (2020) -
Lamin A/C missense variants: from discovery to functional validation
par: Julieta Lazarte, et autres
Publié: (2021) -
Novel cancer stem cell marker MVP enhances temozolomide-resistance in glioblastoma
par: Kum Hee Noh, et autres
Publié: (2022) -
Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis
par: Ryan S. Dhindsa, et autres
Publié: (2021)