MVP predicts the pathogenicity of missense variants by deep learning
Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmenta...
Guardado en:
Autores principales: | Hongjian Qi, Haicang Zhang, Yige Zhao, Chen Chen, John J. Long, Wendy K. Chung, Yongtao Guan, Yufeng Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00b2a98c75c843c688e0cc486648e40e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The cryo-EM structure of the SNX–BAR Mvp1 tetramer
por: Dapeng Sun, et al.
Publicado: (2020) -
Missense variant contribution to USP9X-female syndrome
por: Lachlan A. Jolly, et al.
Publicado: (2020) -
Lamin A/C missense variants: from discovery to functional validation
por: Julieta Lazarte, et al.
Publicado: (2021) -
Novel cancer stem cell marker MVP enhances temozolomide-resistance in glioblastoma
por: Kum Hee Noh, et al.
Publicado: (2022) -
Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis
por: Ryan S. Dhindsa, et al.
Publicado: (2021)