Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain

This study addresses the issue of robust dynamic output feedback control (DOF) for polynomial Takagi–Sugeno (T–S) fuzzy systems in the Finite Frequency (FF) domain. Sufficient conditions for designing the robust DOF control are derived in terms of the sum of squares (SOS). The proposed strategy is b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Redouane Chaibi, Mohamed Yagoubi, Rachid El Bachtiri
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/00b5aa4c3bee4cb2a4e4a8f765c90580
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:00b5aa4c3bee4cb2a4e4a8f765c90580
record_format dspace
spelling oai:doaj.org-article:00b5aa4c3bee4cb2a4e4a8f765c905802021-12-04T04:36:23ZRobust DOF control for uncertain polynomial fuzzy systems in finite frequency domain2666-720710.1016/j.rico.2021.100062https://doaj.org/article/00b5aa4c3bee4cb2a4e4a8f765c905802021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666720721000369https://doaj.org/toc/2666-7207This study addresses the issue of robust dynamic output feedback control (DOF) for polynomial Takagi–Sugeno (T–S) fuzzy systems in the Finite Frequency (FF) domain. Sufficient conditions for designing the robust DOF control are derived in terms of the sum of squares (SOS). The proposed strategy is built in the FF domain to reduce conservation-generated by the techniques established in the whole frequency domain. In addition, there are no transformation matrices or equality constraints under these conditions, which simplifies the numerical solution. To show the validity of the suggested technique, several numerical examples are presented.Redouane ChaibiMohamed YagoubiRachid El BachtiriElsevierarticleDynamic output feedback control (DOF)Finite frequency (FF) domainPolynomial Takagi–Sugeno (T–S) fuzzy systemsApplied mathematics. Quantitative methodsT57-57.97ENResults in Control and Optimization, Vol 5, Iss , Pp 100062- (2021)
institution DOAJ
collection DOAJ
language EN
topic Dynamic output feedback control (DOF)
Finite frequency (FF) domain
Polynomial Takagi–Sugeno (T–S) fuzzy systems
Applied mathematics. Quantitative methods
T57-57.97
spellingShingle Dynamic output feedback control (DOF)
Finite frequency (FF) domain
Polynomial Takagi–Sugeno (T–S) fuzzy systems
Applied mathematics. Quantitative methods
T57-57.97
Redouane Chaibi
Mohamed Yagoubi
Rachid El Bachtiri
Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
description This study addresses the issue of robust dynamic output feedback control (DOF) for polynomial Takagi–Sugeno (T–S) fuzzy systems in the Finite Frequency (FF) domain. Sufficient conditions for designing the robust DOF control are derived in terms of the sum of squares (SOS). The proposed strategy is built in the FF domain to reduce conservation-generated by the techniques established in the whole frequency domain. In addition, there are no transformation matrices or equality constraints under these conditions, which simplifies the numerical solution. To show the validity of the suggested technique, several numerical examples are presented.
format article
author Redouane Chaibi
Mohamed Yagoubi
Rachid El Bachtiri
author_facet Redouane Chaibi
Mohamed Yagoubi
Rachid El Bachtiri
author_sort Redouane Chaibi
title Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
title_short Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
title_full Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
title_fullStr Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
title_full_unstemmed Robust DOF control for uncertain polynomial fuzzy systems in finite frequency domain
title_sort robust dof control for uncertain polynomial fuzzy systems in finite frequency domain
publisher Elsevier
publishDate 2021
url https://doaj.org/article/00b5aa4c3bee4cb2a4e4a8f765c90580
work_keys_str_mv AT redouanechaibi robustdofcontrolforuncertainpolynomialfuzzysystemsinfinitefrequencydomain
AT mohamedyagoubi robustdofcontrolforuncertainpolynomialfuzzysystemsinfinitefrequencydomain
AT rachidelbachtiri robustdofcontrolforuncertainpolynomialfuzzysystemsinfinitefrequencydomain
_version_ 1718372890245595136