An Efficient Stochastic Constrained Path Planner for Redundant Manipulators
This brief proposes a novel stochastic method that exploits the particular kinematics of mechanisms with redundant actuation and a well-known manipulability measure to track the desired end-effector task-space motion in an efficient manner. Whilst closed-form optimal solutions to maximise manipulabi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00d753fd98d64984a6c12593634ebfc1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:00d753fd98d64984a6c12593634ebfc1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:00d753fd98d64984a6c12593634ebfc12021-11-25T16:34:00ZAn Efficient Stochastic Constrained Path Planner for Redundant Manipulators10.3390/app1122106362076-3417https://doaj.org/article/00d753fd98d64984a6c12593634ebfc12021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10636https://doaj.org/toc/2076-3417This brief proposes a novel stochastic method that exploits the particular kinematics of mechanisms with redundant actuation and a well-known manipulability measure to track the desired end-effector task-space motion in an efficient manner. Whilst closed-form optimal solutions to maximise manipulability along a desired trajectory have been proposed in the literature, the solvers become unfeasible in the presence of obstacles. A manageable alternative to functional motion planning is thus proposed that exploits the inherent characteristics of null-space configurations to construct a generic solution able to improve manipulability along a task-space trajectory in the presence of obstacles. The proposed Stochastic Constrained Optimization (SCO) solution remains close to optimal whilst exhibiting computational tractability, being an attractive proposition for implementation on real robots, as shown with results in challenging simulation scenarios, as well as with a real 7R Sawyer manipulator, during surface conditioning tasks.Arturo Gil AparicioJaime Valls MiroMDPI AGarticlemanipulator motion planningmanipulabilitystochastic plannerTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10636, p 10636 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
manipulator motion planning manipulability stochastic planner Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
manipulator motion planning manipulability stochastic planner Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Arturo Gil Aparicio Jaime Valls Miro An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
description |
This brief proposes a novel stochastic method that exploits the particular kinematics of mechanisms with redundant actuation and a well-known manipulability measure to track the desired end-effector task-space motion in an efficient manner. Whilst closed-form optimal solutions to maximise manipulability along a desired trajectory have been proposed in the literature, the solvers become unfeasible in the presence of obstacles. A manageable alternative to functional motion planning is thus proposed that exploits the inherent characteristics of null-space configurations to construct a generic solution able to improve manipulability along a task-space trajectory in the presence of obstacles. The proposed Stochastic Constrained Optimization (SCO) solution remains close to optimal whilst exhibiting computational tractability, being an attractive proposition for implementation on real robots, as shown with results in challenging simulation scenarios, as well as with a real 7R Sawyer manipulator, during surface conditioning tasks. |
format |
article |
author |
Arturo Gil Aparicio Jaime Valls Miro |
author_facet |
Arturo Gil Aparicio Jaime Valls Miro |
author_sort |
Arturo Gil Aparicio |
title |
An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
title_short |
An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
title_full |
An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
title_fullStr |
An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
title_full_unstemmed |
An Efficient Stochastic Constrained Path Planner for Redundant Manipulators |
title_sort |
efficient stochastic constrained path planner for redundant manipulators |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/00d753fd98d64984a6c12593634ebfc1 |
work_keys_str_mv |
AT arturogilaparicio anefficientstochasticconstrainedpathplannerforredundantmanipulators AT jaimevallsmiro anefficientstochasticconstrainedpathplannerforredundantmanipulators AT arturogilaparicio efficientstochasticconstrainedpathplannerforredundantmanipulators AT jaimevallsmiro efficientstochasticconstrainedpathplannerforredundantmanipulators |
_version_ |
1718413116739420160 |