Prioritizing network communities
Community detection allows one to decompose a network into its building blocks. While communities can be identified with a variety of methods, their relative importance can’t be easily derived. Here the authors introduce an algorithm to identify modules which are most promising for further analysis....
Guardado en:
Autores principales: | Marinka Zitnik, Rok Sosič, Jure Leskovec |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00dc5401cf18438ba262bf318ff6e151 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of disease treatment mechanisms through the multiscale interactome
por: Camilo Ruiz, et al.
Publicado: (2021) -
Network enhancement as a general method to denoise weighted biological networks
por: Bo Wang, et al.
Publicado: (2018) -
Leveraging the Cell Ontology to classify unseen cell types
por: Sheng Wang, et al.
Publicado: (2021) -
Co-evolution based machine-learning for predicting functional interactions between human genes
por: Doron Stupp, et al.
Publicado: (2021) -
Retroactive and graded prioritization of memory by reward
por: Erin Kendall Braun, et al.
Publicado: (2018)