A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy

Abstract Whether the lipid profile in diabetic patients is associated with diabetic neuropathy (DN) development remains ambiguous, as does the predictive value of serum lipid levels in the risk of DN. Here, we performed the first meta-analysis designed to investigate the relationship between DN and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zixin Cai, Yan Yang, Jingjing Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/00fc4f1689c8443f9a2859cd28d45ce5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:00fc4f1689c8443f9a2859cd28d45ce5
record_format dspace
spelling oai:doaj.org-article:00fc4f1689c8443f9a2859cd28d45ce52021-12-02T14:01:22ZA systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy10.1038/s41598-020-79276-02045-2322https://doaj.org/article/00fc4f1689c8443f9a2859cd28d45ce52021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79276-0https://doaj.org/toc/2045-2322Abstract Whether the lipid profile in diabetic patients is associated with diabetic neuropathy (DN) development remains ambiguous, as does the predictive value of serum lipid levels in the risk of DN. Here, we performed the first meta-analysis designed to investigate the relationship between DN and the serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL). Candidate studies were comprehensively identified by searching PubMed, Embase, Cochrane Library and Web of Science databases up to May 2020. Observational methodological meta-analysis was conducted to assess the relationships of TG, TC, HDL, and LDL levels with DN. Changes in blood lipids were used to estimate the effect size. The results were pooled using a random-effects or fixed-effects model. Potential sources of heterogeneity were explored by subgroup analysis. Various outcomes were included, and statistical analyses were performed using STATA (Version 12.0). Mean differences (MDs) and odds ratios (ORs) with 95% confidence intervals (CIs) were estimated. The Newcastle–Ottawa Scale (NOS) was applied to assess the methodological quality. I2 statistics were calculated to evaluate statistical heterogeneity. Funnel plots were utilized to test for publication bias. A sensitivity analysis was performed by omitting each study one by one. Thirty-nine clinical trials containing 32,668 patients were included in the meta-analysis. The results demonstrated that DN patients showed higher TG and lower HDL levels (MD = 0.34, 95% CI: 0.20–0.48 for TG; MD = -0.05, 95% CI: -0.08–-0.02, I 2  = 81.3% for HDL) than controls. Subgroup analysis showed that patients with type 1 diabetes mellitus (T1DM) neuropathy had elevated TG levels in their serum (MD = 0.25, 95% CI: 0.16–0.35,I 2  = 64.4% for T1DM). However, only patients with T1DM neuropathy had reduced serum HDL levels, and there was no significant difference in serum HDL levels between patients with T2DM neuropathy and controls (MD = -0.07, 95% CI: -0.10–-0.03, I 2  = 12.4% for T1DM; MD = -0.02, 95% CI: -0.07–0.03, I 2  = 80.2% for T2DM). TC and LDL levels were not significantly different between DN patients and controls (MD = -0.03, 95% CI: -0.14–0.09, I 2  = 82.9% for TC; MD = -0.00, 95% CI: -0.08–0.08, I 2  = 78.9% for LDL). In addition, compared with mild or painless DN patients, those with moderate or severe pain DN pain had significantly reduced serum TC and LDL levels (MD = -0.31, 95% CI: -0.49–-0.13, I 2  = 0% for TC; MD = -0.19, 95% CI: -0.32–-0.08, I 2  = 0% for LDL). TG levels and HDL levels did not vary considerably between patients with mild or painless DN and those with moderate or severe DN pain patients (MD = 0.12, 95% CI: -0.28–0.51, I 2  = 83.2% for TG; MD = -0.07, 95% CI:-0.14–0.01, I 2  = 58.8% for HDL). Furthermore, people with higher TG and LDL levels had higher risk of DN (OR = 1.36, 95% CI: 1.20–1.54, I 2  = 86.1% for TG and OR = 1.10, 95% CI: 1.02–1.19, I 2  = 17.8% for LDL). Conversely, high serum HDL levels reduced the risk of DN (OR = 0.85, 95% CI: 0.75–0.96, I 2  = 72.6%), while TC levels made no significant difference with the risk of DN (OR = 1.02, 95% CI: 1.00–1.04, I 2  = 84.7%). This meta-analysis indicated that serum lipid profile changes are among the biological characteristics of DN. Lipid levels should be explored as routine laboratory markers for predicting the risk of DN, as they will help clinicians choose appropriate therapies, and thus optimize the use of available resources.Zixin CaiYan YangJingjing ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Zixin Cai
Yan Yang
Jingjing Zhang
A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
description Abstract Whether the lipid profile in diabetic patients is associated with diabetic neuropathy (DN) development remains ambiguous, as does the predictive value of serum lipid levels in the risk of DN. Here, we performed the first meta-analysis designed to investigate the relationship between DN and the serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL). Candidate studies were comprehensively identified by searching PubMed, Embase, Cochrane Library and Web of Science databases up to May 2020. Observational methodological meta-analysis was conducted to assess the relationships of TG, TC, HDL, and LDL levels with DN. Changes in blood lipids were used to estimate the effect size. The results were pooled using a random-effects or fixed-effects model. Potential sources of heterogeneity were explored by subgroup analysis. Various outcomes were included, and statistical analyses were performed using STATA (Version 12.0). Mean differences (MDs) and odds ratios (ORs) with 95% confidence intervals (CIs) were estimated. The Newcastle–Ottawa Scale (NOS) was applied to assess the methodological quality. I2 statistics were calculated to evaluate statistical heterogeneity. Funnel plots were utilized to test for publication bias. A sensitivity analysis was performed by omitting each study one by one. Thirty-nine clinical trials containing 32,668 patients were included in the meta-analysis. The results demonstrated that DN patients showed higher TG and lower HDL levels (MD = 0.34, 95% CI: 0.20–0.48 for TG; MD = -0.05, 95% CI: -0.08–-0.02, I 2  = 81.3% for HDL) than controls. Subgroup analysis showed that patients with type 1 diabetes mellitus (T1DM) neuropathy had elevated TG levels in their serum (MD = 0.25, 95% CI: 0.16–0.35,I 2  = 64.4% for T1DM). However, only patients with T1DM neuropathy had reduced serum HDL levels, and there was no significant difference in serum HDL levels between patients with T2DM neuropathy and controls (MD = -0.07, 95% CI: -0.10–-0.03, I 2  = 12.4% for T1DM; MD = -0.02, 95% CI: -0.07–0.03, I 2  = 80.2% for T2DM). TC and LDL levels were not significantly different between DN patients and controls (MD = -0.03, 95% CI: -0.14–0.09, I 2  = 82.9% for TC; MD = -0.00, 95% CI: -0.08–0.08, I 2  = 78.9% for LDL). In addition, compared with mild or painless DN patients, those with moderate or severe pain DN pain had significantly reduced serum TC and LDL levels (MD = -0.31, 95% CI: -0.49–-0.13, I 2  = 0% for TC; MD = -0.19, 95% CI: -0.32–-0.08, I 2  = 0% for LDL). TG levels and HDL levels did not vary considerably between patients with mild or painless DN and those with moderate or severe DN pain patients (MD = 0.12, 95% CI: -0.28–0.51, I 2  = 83.2% for TG; MD = -0.07, 95% CI:-0.14–0.01, I 2  = 58.8% for HDL). Furthermore, people with higher TG and LDL levels had higher risk of DN (OR = 1.36, 95% CI: 1.20–1.54, I 2  = 86.1% for TG and OR = 1.10, 95% CI: 1.02–1.19, I 2  = 17.8% for LDL). Conversely, high serum HDL levels reduced the risk of DN (OR = 0.85, 95% CI: 0.75–0.96, I 2  = 72.6%), while TC levels made no significant difference with the risk of DN (OR = 1.02, 95% CI: 1.00–1.04, I 2  = 84.7%). This meta-analysis indicated that serum lipid profile changes are among the biological characteristics of DN. Lipid levels should be explored as routine laboratory markers for predicting the risk of DN, as they will help clinicians choose appropriate therapies, and thus optimize the use of available resources.
format article
author Zixin Cai
Yan Yang
Jingjing Zhang
author_facet Zixin Cai
Yan Yang
Jingjing Zhang
author_sort Zixin Cai
title A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
title_short A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
title_full A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
title_fullStr A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
title_full_unstemmed A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
title_sort systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/00fc4f1689c8443f9a2859cd28d45ce5
work_keys_str_mv AT zixincai asystematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
AT yanyang asystematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
AT jingjingzhang asystematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
AT zixincai systematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
AT yanyang systematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
AT jingjingzhang systematicreviewandmetaanalysisoftheserumlipidprofileinpredictionofdiabeticneuropathy
_version_ 1718392120089247744