Engineering prokaryotic channels for control of mammalian tissue excitability
Restoring lost excitability of injured tissue is a paramount of regenerative medicine. By using a combined expression of bacterial voltage-gated Na+ channel, Kir2.1, and connexin-43 in non-excitable human fibroblasts, here the authors generate excitable cells that rescue action potential conduction...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/01169a26b7fb41869b421987bafb38d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Restoring lost excitability of injured tissue is a paramount of regenerative medicine. By using a combined expression of bacterial voltage-gated Na+ channel, Kir2.1, and connexin-43 in non-excitable human fibroblasts, here the authors generate excitable cells that rescue action potential conduction in an in vitromodel of cardiac fibrosis. |
---|