Considering the geological significance in data preprocessing and improving the prediction accuracy of hot springs by deep learning
The geothermal gradient in the eastern area of Liaoning Province is very low, but hot springs resources are variable. The reason is not clear till now but leads to the fact that a few strong influence factors can cause imbalances in the results of many prediction algorithms. It can be found as a bla...
Guardado en:
Autores principales: | Sang Xuejia, Xue Linfu, Li Xiaoshun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0143093d740e43eab7a6b4684c51748b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Origin of the low-medium temperature hot springs around Nanjing, China
por: Ma Jun, et al.
Publicado: (2021) -
SANITARY AND MICROBIOLOGICAL ASSESSMENT OF COLD AND HOT MINERAL SPRINGS OF PRIBAIKALYE
por: D. D. Barkhutova, et al.
Publicado: (2012) -
Isotope and Geochemistry Characterization of Hot Springs and Cold Springs of Sembalun – Rinjani Area, East Lombok, West Nusa Tenggara – Indonesia
por: Satrio Satrio, et al.
Publicado: (2020) -
Water Richness Zoning and Evaluation of the Coal Seam Roof Aquifer Based on AHP and Multisource Geological Information Fusion
por: Ke Zhou
Publicado: (2021) -
Geology, Geophysics & Environment
Publicado: (2021)