Different hybrid machine intelligence techniques for handling IoT‐based imbalanced data
Abstract In the era of automatic task processing or designing complex algorithms, to analyse data, it is always pertinent to find real‐life solutions using cutting‐edge tools and techniques to generate insights into the data. The data‐driven machine learning models are now offering more or less wort...
Guardado en:
Autores principales: | Gaurav Mohindru, Koushik Mondal, Haider Banka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/014d1b354220429580ded2cebdc4d73b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An efficient hybrid recommendation model based on collaborative filtering recommender systems
por: Mohammed Fadhel Aljunid, et al.
Publicado: (2021) -
Constrained tolerance rough set in incomplete information systems
por: Renxia Wan, et al.
Publicado: (2021) -
Low‐rank constrained weighted discriminative regression for multi‐view feature learning
por: Chao Zhang, et al.
Publicado: (2021) -
Deep imitation reinforcement learning for self‐driving by vision
por: Qijie Zou, et al.
Publicado: (2021) -
Design and analysis of recurrent neural network models with non‐linear activation functions for solving time‐varying quadratic programming problems
por: Xiaoyan Zhang, et al.
Publicado: (2021)