A machine learning-driven stochastic simulation of underground sulfide distribution with multiple constraints

The increase of sulfide (S2−) during the water flooding process has been regarded as an essential and potential risk for oilfield development and safety. Kriging and stochastic simulations are common methods for assessing the element distribution. However, these traditional simulation methods are no...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ji Qiuyan, Han Feilong, Qian Wei, Guo Qing, Wan Shulin
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/015e003323524026b1921c406a8bc82a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares