A machine learning-driven stochastic simulation of underground sulfide distribution with multiple constraints
The increase of sulfide (S2−) during the water flooding process has been regarded as an essential and potential risk for oilfield development and safety. Kriging and stochastic simulations are common methods for assessing the element distribution. However, these traditional simulation methods are no...
Guardado en:
Autores principales: | Ji Qiuyan, Han Feilong, Qian Wei, Guo Qing, Wan Shulin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/015e003323524026b1921c406a8bc82a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gas Hydrate Accumulation and Occurrence Associated with Cold Seep Systems in the Northern South China Sea: An Overview
por: Wei Zhang, et al.
Publicado: (2021) -
[From Low-Enthalpy Geothermal to Geo-exchange: from Integrated Design to Works Supervision]
por: Rimsky Valvassori, et al.
Publicado: (2021) -
[Future administrators and legislators, and opportunities not to be missed]
por: Emanuele Emani, et al.
Publicado: (2021) -
Erratum to “Calibration of the depth invariant algorithm to monitor the tidal action of Rabigh City at the Red Sea Coast, Saudi Arabia”
por: Aljahdali Mohammed H., et al.
Publicado: (2021) -
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
por: E. A. Quichimbo, et al.
Publicado: (2021)