Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network
Brillouin scattering-based distributed optical fiber sensors have been successfully employed in various applications in recent decades, because of benefits such as small size, light weight, electromagnetic immunity, and continuous monitoring of temperature and strain. However, the data processing re...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/01702cf665bc40b7b11f2fd5e65c84f6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:01702cf665bc40b7b11f2fd5e65c84f6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:01702cf665bc40b7b11f2fd5e65c84f62021-11-25T18:43:06ZFast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network10.3390/photonics81104742304-6732https://doaj.org/article/01702cf665bc40b7b11f2fd5e65c84f62021-10-01T00:00:00Zhttps://www.mdpi.com/2304-6732/8/11/474https://doaj.org/toc/2304-6732Brillouin scattering-based distributed optical fiber sensors have been successfully employed in various applications in recent decades, because of benefits such as small size, light weight, electromagnetic immunity, and continuous monitoring of temperature and strain. However, the data processing requirements for the Brillouin Gain Spectrum (BGS) restrict further improvement of monitoring performance and limit the application of real-time measurements. Studies using Feedforward Neural Network (FNN) to measure Brillouin Frequency Shift (BFS) have been performed in recent years to validate the possibility of improving measurement performance. In this work, a novel FNN that is 3 times faster than previous FNNs is proposed to improve BFS measurement performance. More specifically, after the original Brillouin Gain Spectrum (BGS) is preprocessed by Principal Component Analysis (PCA), the data are fed into the Feedforward Neural Network (FNN) to predict BFS.Fen XiaoMingxing LvXinwan LiMDPI AGarticleneural networksPrincipal Components Analysisdistributed fiber sensingApplied optics. PhotonicsTA1501-1820ENPhotonics, Vol 8, Iss 474, p 474 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
neural networks Principal Components Analysis distributed fiber sensing Applied optics. Photonics TA1501-1820 |
spellingShingle |
neural networks Principal Components Analysis distributed fiber sensing Applied optics. Photonics TA1501-1820 Fen Xiao Mingxing Lv Xinwan Li Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
description |
Brillouin scattering-based distributed optical fiber sensors have been successfully employed in various applications in recent decades, because of benefits such as small size, light weight, electromagnetic immunity, and continuous monitoring of temperature and strain. However, the data processing requirements for the Brillouin Gain Spectrum (BGS) restrict further improvement of monitoring performance and limit the application of real-time measurements. Studies using Feedforward Neural Network (FNN) to measure Brillouin Frequency Shift (BFS) have been performed in recent years to validate the possibility of improving measurement performance. In this work, a novel FNN that is 3 times faster than previous FNNs is proposed to improve BFS measurement performance. More specifically, after the original Brillouin Gain Spectrum (BGS) is preprocessed by Principal Component Analysis (PCA), the data are fed into the Feedforward Neural Network (FNN) to predict BFS. |
format |
article |
author |
Fen Xiao Mingxing Lv Xinwan Li |
author_facet |
Fen Xiao Mingxing Lv Xinwan Li |
author_sort |
Fen Xiao |
title |
Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
title_short |
Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
title_full |
Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
title_fullStr |
Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
title_full_unstemmed |
Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network |
title_sort |
fast measurement of brillouin frequency shift in optical fiber based on a novel feedforward neural network |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/01702cf665bc40b7b11f2fd5e65c84f6 |
work_keys_str_mv |
AT fenxiao fastmeasurementofbrillouinfrequencyshiftinopticalfiberbasedonanovelfeedforwardneuralnetwork AT mingxinglv fastmeasurementofbrillouinfrequencyshiftinopticalfiberbasedonanovelfeedforwardneuralnetwork AT xinwanli fastmeasurementofbrillouinfrequencyshiftinopticalfiberbasedonanovelfeedforwardneuralnetwork |
_version_ |
1718410752588513280 |