<i>s</i>-Sequences and Monomial Modules
In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, ov...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0173f614d3d6483982562c90a8262116 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results. |
---|