<i>s</i>-Sequences and Monomial Modules

In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, ov...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gioia Failla, Paola Lea Staglianó
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0173f614d3d6483982562c90a8262116
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results.