<i>s</i>-Sequences and Monomial Modules

In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, ov...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gioia Failla, Paola Lea Staglianó
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0173f614d3d6483982562c90a8262116
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0173f614d3d6483982562c90a8262116
record_format dspace
spelling oai:doaj.org-article:0173f614d3d6483982562c90a82621162021-11-11T18:14:03Z<i>s</i>-Sequences and Monomial Modules10.3390/math92126592227-7390https://doaj.org/article/0173f614d3d6483982562c90a82621162021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2659https://doaj.org/toc/2227-7390In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results.Gioia FaillaPaola Lea StaglianóMDPI AGarticlesymmetric algebramonomial modulesGröbner basesMathematicsQA1-939ENMathematics, Vol 9, Iss 2659, p 2659 (2021)
institution DOAJ
collection DOAJ
language EN
topic symmetric algebra
monomial modules
Gröbner bases
Mathematics
QA1-939
spellingShingle symmetric algebra
monomial modules
Gröbner bases
Mathematics
QA1-939
Gioia Failla
Paola Lea Staglianó
<i>s</i>-Sequences and Monomial Modules
description In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results.
format article
author Gioia Failla
Paola Lea Staglianó
author_facet Gioia Failla
Paola Lea Staglianó
author_sort Gioia Failla
title <i>s</i>-Sequences and Monomial Modules
title_short <i>s</i>-Sequences and Monomial Modules
title_full <i>s</i>-Sequences and Monomial Modules
title_fullStr <i>s</i>-Sequences and Monomial Modules
title_full_unstemmed <i>s</i>-Sequences and Monomial Modules
title_sort <i>s</i>-sequences and monomial modules
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0173f614d3d6483982562c90a8262116
work_keys_str_mv AT gioiafailla isisequencesandmonomialmodules
AT paolaleastagliano isisequencesandmonomialmodules
_version_ 1718431861582069760