<i>s</i>-Sequences and Monomial Modules
In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, ov...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0173f614d3d6483982562c90a8262116 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0173f614d3d6483982562c90a8262116 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0173f614d3d6483982562c90a82621162021-11-11T18:14:03Z<i>s</i>-Sequences and Monomial Modules10.3390/math92126592227-7390https://doaj.org/article/0173f614d3d6483982562c90a82621162021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2659https://doaj.org/toc/2227-7390In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results.Gioia FaillaPaola Lea StaglianóMDPI AGarticlesymmetric algebramonomial modulesGröbner basesMathematicsQA1-939ENMathematics, Vol 9, Iss 2659, p 2659 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
symmetric algebra monomial modules Gröbner bases Mathematics QA1-939 |
spellingShingle |
symmetric algebra monomial modules Gröbner bases Mathematics QA1-939 Gioia Failla Paola Lea Staglianó <i>s</i>-Sequences and Monomial Modules |
description |
In this paper we study a monomial module <i>M</i> generated by an <i>s</i>-sequence and the main algebraic and homological invariants of the symmetric algebra of <i>M</i>. We show that the first syzygy module of a finitely generated module <i>M</i>, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided <i>M</i> is generated by an <i>s</i>-sequence. Significant examples complement the results. |
format |
article |
author |
Gioia Failla Paola Lea Staglianó |
author_facet |
Gioia Failla Paola Lea Staglianó |
author_sort |
Gioia Failla |
title |
<i>s</i>-Sequences and Monomial Modules |
title_short |
<i>s</i>-Sequences and Monomial Modules |
title_full |
<i>s</i>-Sequences and Monomial Modules |
title_fullStr |
<i>s</i>-Sequences and Monomial Modules |
title_full_unstemmed |
<i>s</i>-Sequences and Monomial Modules |
title_sort |
<i>s</i>-sequences and monomial modules |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0173f614d3d6483982562c90a8262116 |
work_keys_str_mv |
AT gioiafailla isisequencesandmonomialmodules AT paolaleastagliano isisequencesandmonomialmodules |
_version_ |
1718431861582069760 |