Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress
Abstract Drought stress results in significant crop yield losses. Comparative transcriptome analysis between tolerant and sensitive species can provide insights into drought tolerance mechanisms in jute. We present a comprehensive study on drought tolerance in two jute species—a drought tolerant spe...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/018214e2154a476facffeb31f0360e9f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:018214e2154a476facffeb31f0360e9f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:018214e2154a476facffeb31f0360e9f2021-12-02T15:04:59ZTranscriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress10.1038/s41598-017-16812-52045-2322https://doaj.org/article/018214e2154a476facffeb31f0360e9f2017-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-16812-5https://doaj.org/toc/2045-2322Abstract Drought stress results in significant crop yield losses. Comparative transcriptome analysis between tolerant and sensitive species can provide insights into drought tolerance mechanisms in jute. We present a comprehensive study on drought tolerance in two jute species—a drought tolerant species (Corchorus olitorius L., GF) and a drought sensitive species (Corchorus capsularis L., YY). In total, 45,831 non-redundant unigenes with average sequence length of 1421 bp were identified. Higher numbers of differentially expressed genes (DEGs) were discovered in YY (794) than in GF (39), implying that YY was relatively more vulnerable or hyper-responsive to drought stress at the molecular level; the two main pathways, phenylpropanoid biosynthesis and peroxisome pathway, significantly involved in scavenging of reactive oxygen species (ROS) and 14 unigenes in the two pathways presented a significant differential expression in response to increase of superoxide. Our classification analysis showed that 1769 transcription factors can be grouped into 81 families and 948 protein kinases (PKs) into 122 families. In YY, we identified 34 TF DEGs from and 23 PK DEGs, including 19 receptor-like kinases (RLKs). Most of these RLKs were downregulated during drought stress, implying their role as negative regulators of the drought tolerance mechanism in jute.Zemao YangZhigang DaiRuike LuBibo WuQing TangYing XuChaohua ChengJianguang SuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zemao Yang Zhigang Dai Ruike Lu Bibo Wu Qing Tang Ying Xu Chaohua Cheng Jianguang Su Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
description |
Abstract Drought stress results in significant crop yield losses. Comparative transcriptome analysis between tolerant and sensitive species can provide insights into drought tolerance mechanisms in jute. We present a comprehensive study on drought tolerance in two jute species—a drought tolerant species (Corchorus olitorius L., GF) and a drought sensitive species (Corchorus capsularis L., YY). In total, 45,831 non-redundant unigenes with average sequence length of 1421 bp were identified. Higher numbers of differentially expressed genes (DEGs) were discovered in YY (794) than in GF (39), implying that YY was relatively more vulnerable or hyper-responsive to drought stress at the molecular level; the two main pathways, phenylpropanoid biosynthesis and peroxisome pathway, significantly involved in scavenging of reactive oxygen species (ROS) and 14 unigenes in the two pathways presented a significant differential expression in response to increase of superoxide. Our classification analysis showed that 1769 transcription factors can be grouped into 81 families and 948 protein kinases (PKs) into 122 families. In YY, we identified 34 TF DEGs from and 23 PK DEGs, including 19 receptor-like kinases (RLKs). Most of these RLKs were downregulated during drought stress, implying their role as negative regulators of the drought tolerance mechanism in jute. |
format |
article |
author |
Zemao Yang Zhigang Dai Ruike Lu Bibo Wu Qing Tang Ying Xu Chaohua Cheng Jianguang Su |
author_facet |
Zemao Yang Zhigang Dai Ruike Lu Bibo Wu Qing Tang Ying Xu Chaohua Cheng Jianguang Su |
author_sort |
Zemao Yang |
title |
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
title_short |
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
title_full |
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
title_fullStr |
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
title_full_unstemmed |
Transcriptome Analysis of Two Species of Jute in Response to Polyethylene Glycol (PEG)- induced Drought Stress |
title_sort |
transcriptome analysis of two species of jute in response to polyethylene glycol (peg)- induced drought stress |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/018214e2154a476facffeb31f0360e9f |
work_keys_str_mv |
AT zemaoyang transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT zhigangdai transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT ruikelu transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT bibowu transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT qingtang transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT yingxu transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT chaohuacheng transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress AT jianguangsu transcriptomeanalysisoftwospeciesofjuteinresponsetopolyethyleneglycolpeginduceddroughtstress |
_version_ |
1718388933266505728 |