Multiclass Incremental Learning for Fault Diagnosis in Induction Motors Using Fine-Tuning with a Memory of Exemplars and Nearest Centroid Classifier
Early detection of fault events through electromechanical systems operation is one of the most attractive and critical data challenges in modern industry. Although these electromechanical systems tend to experiment with typical faults, a common event is that unexpected and unknown faults can be pres...
Guardado en:
Autores principales: | Magdiel Jiménez-Guarneros, Jonas Grande-Barreto, Jose de Jesus Rangel-Magdaleno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/018f20ef02214080bb44d38db79a1f61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nearest centroid classification on a trapped ion quantum computer
por: Sonika Johri, et al.
Publicado: (2021) -
Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
por: Nabeela Kausar, et al.
Publicado: (2021) -
Nearest feature line classifier based on collaborative representation with nearest neighbour search algorithm
por: Zhongjie Zhuang, et al.
Publicado: (2021) -
Rubrics and Exemplars in Text-conferencing
por: Allan Zahara
Publicado: (2005) -
Bearing Fault Diagnosis Using Refined Composite Generalized Multiscale Dispersion Entropy-Based Skewness and Variance and Multiclass FCM-ANFIS
por: Mostafa Rostaghi, et al.
Publicado: (2021)