Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection

While researchers and practitioners may seamlessly develop methods of detecting outliers in control charts under a univariate setup, detecting and screening outliers in multivariate control charts pose serious challenges. In this study, we propose a robust multivariate control chart based on the Sta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ishaq Adeyanju Raji, Nasir Abbas, Mu’azu Ramat Abujiya, Muhammad Riaz
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/019af6214df847268c26ff700449f57d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:019af6214df847268c26ff700449f57d
record_format dspace
spelling oai:doaj.org-article:019af6214df847268c26ff700449f57d2021-11-11T18:18:51ZRobust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection10.3390/math92127722227-7390https://doaj.org/article/019af6214df847268c26ff700449f57d2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2772https://doaj.org/toc/2227-7390While researchers and practitioners may seamlessly develop methods of detecting outliers in control charts under a univariate setup, detecting and screening outliers in multivariate control charts pose serious challenges. In this study, we propose a robust multivariate control chart based on the Stahel-Donoho robust estimator (SDRE), whilst the process parameters are estimated from phase-I. Through intensive Monte-Carlo simulation, the study presents how the estimation of parameters and presence of outliers affect the efficacy of the Hotelling <i>T</i><sup>2</sup> chart, and then how the proposed outlier detector brings the chart back to normalcy by restoring its efficacy and sensitivity. Run-length properties are used as the performance measures. The run length properties establish the superiority of the proposed scheme over the default multivariate Shewhart control charting scheme. The applicability of the study includes but is not limited to manufacturing and health industries. The study concludes with a real-life application of the proposed chart on a dataset extracted from the manufacturing process of carbon fiber tubes.Ishaq Adeyanju RajiNasir AbbasMu’azu Ramat AbujiyaMuhammad RiazMDPI AGarticlemultivariate control chartsMahalanobis distancecontrol chartHotelling <i>T</i><sup>2</sup>Stahel-Donoho robust estimatorsoutlier detectionMathematicsQA1-939ENMathematics, Vol 9, Iss 2772, p 2772 (2021)
institution DOAJ
collection DOAJ
language EN
topic multivariate control charts
Mahalanobis distance
control chart
Hotelling <i>T</i><sup>2</sup>
Stahel-Donoho robust estimators
outlier detection
Mathematics
QA1-939
spellingShingle multivariate control charts
Mahalanobis distance
control chart
Hotelling <i>T</i><sup>2</sup>
Stahel-Donoho robust estimators
outlier detection
Mathematics
QA1-939
Ishaq Adeyanju Raji
Nasir Abbas
Mu’azu Ramat Abujiya
Muhammad Riaz
Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
description While researchers and practitioners may seamlessly develop methods of detecting outliers in control charts under a univariate setup, detecting and screening outliers in multivariate control charts pose serious challenges. In this study, we propose a robust multivariate control chart based on the Stahel-Donoho robust estimator (SDRE), whilst the process parameters are estimated from phase-I. Through intensive Monte-Carlo simulation, the study presents how the estimation of parameters and presence of outliers affect the efficacy of the Hotelling <i>T</i><sup>2</sup> chart, and then how the proposed outlier detector brings the chart back to normalcy by restoring its efficacy and sensitivity. Run-length properties are used as the performance measures. The run length properties establish the superiority of the proposed scheme over the default multivariate Shewhart control charting scheme. The applicability of the study includes but is not limited to manufacturing and health industries. The study concludes with a real-life application of the proposed chart on a dataset extracted from the manufacturing process of carbon fiber tubes.
format article
author Ishaq Adeyanju Raji
Nasir Abbas
Mu’azu Ramat Abujiya
Muhammad Riaz
author_facet Ishaq Adeyanju Raji
Nasir Abbas
Mu’azu Ramat Abujiya
Muhammad Riaz
author_sort Ishaq Adeyanju Raji
title Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
title_short Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
title_full Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
title_fullStr Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
title_full_unstemmed Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
title_sort robust multivariate shewhart control chart based on the stahel-donoho robust estimator and mahalanobis distance for multivariate outlier detection
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/019af6214df847268c26ff700449f57d
work_keys_str_mv AT ishaqadeyanjuraji robustmultivariateshewhartcontrolchartbasedonthestaheldonohorobustestimatorandmahalanobisdistanceformultivariateoutlierdetection
AT nasirabbas robustmultivariateshewhartcontrolchartbasedonthestaheldonohorobustestimatorandmahalanobisdistanceformultivariateoutlierdetection
AT muazuramatabujiya robustmultivariateshewhartcontrolchartbasedonthestaheldonohorobustestimatorandmahalanobisdistanceformultivariateoutlierdetection
AT muhammadriaz robustmultivariateshewhartcontrolchartbasedonthestaheldonohorobustestimatorandmahalanobisdistanceformultivariateoutlierdetection
_version_ 1718431861791784960