Learned spectral decoloring enables photoacoustic oximetry
Abstract The ability of photoacoustic imaging to measure functional tissue properties, such as blood oxygenation sO $$_2$$ 2 , enables a wide variety of possible applications. sO $$_2$$ 2 can be computed from the ratio of oxyhemoglobin HbO $$_2$$ 2 and deoxyhemoglobin Hb, which can be distuinguished...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/019d73fc5cf4474e8021811512243c33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:019d73fc5cf4474e8021811512243c33 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:019d73fc5cf4474e8021811512243c332021-12-02T16:36:13ZLearned spectral decoloring enables photoacoustic oximetry10.1038/s41598-021-83405-82045-2322https://doaj.org/article/019d73fc5cf4474e8021811512243c332021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83405-8https://doaj.org/toc/2045-2322Abstract The ability of photoacoustic imaging to measure functional tissue properties, such as blood oxygenation sO $$_2$$ 2 , enables a wide variety of possible applications. sO $$_2$$ 2 can be computed from the ratio of oxyhemoglobin HbO $$_2$$ 2 and deoxyhemoglobin Hb, which can be distuinguished by multispectral photoacoustic imaging due to their distinct wavelength-dependent absorption. However, current methods for estimating sO $$_2$$ 2 yield inaccurate results in realistic settings, due to the unknown and wavelength-dependent influence of the light fluence on the signal. In this work, we propose learned spectral decoloring to enable blood oxygenation measurements to be inferred from multispectral photoacoustic imaging. The method computes sO $$_2$$ 2 pixel-wise, directly from initial pressure spectra $$S_{\text {p}_0}(\lambda , \mathbf {x})$$ S p 0 ( λ , x ) , which represent initial pressure values at a fixed spatial location $$\mathbf {x}$$ x over all recorded wavelengths $$\lambda$$ λ . The method is compared to linear unmixing approaches, as well as pO $$_2$$ 2 and blood gas analysis reference measurements. Experimental results suggest that the proposed method is able to obtain sO $$_2$$ 2 estimates from multispectral photoacoustic measurements in silico, in vitro, and in vivo.Janek GröhlThomas KirchnerTim J. AdlerLina HackerNiklas HolzwarthAdrián Hernández-AguileraMildred A. HerreraEdgar SantosSarah E. BohndiekLena Maier-HeinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Janek Gröhl Thomas Kirchner Tim J. Adler Lina Hacker Niklas Holzwarth Adrián Hernández-Aguilera Mildred A. Herrera Edgar Santos Sarah E. Bohndiek Lena Maier-Hein Learned spectral decoloring enables photoacoustic oximetry |
description |
Abstract The ability of photoacoustic imaging to measure functional tissue properties, such as blood oxygenation sO $$_2$$ 2 , enables a wide variety of possible applications. sO $$_2$$ 2 can be computed from the ratio of oxyhemoglobin HbO $$_2$$ 2 and deoxyhemoglobin Hb, which can be distuinguished by multispectral photoacoustic imaging due to their distinct wavelength-dependent absorption. However, current methods for estimating sO $$_2$$ 2 yield inaccurate results in realistic settings, due to the unknown and wavelength-dependent influence of the light fluence on the signal. In this work, we propose learned spectral decoloring to enable blood oxygenation measurements to be inferred from multispectral photoacoustic imaging. The method computes sO $$_2$$ 2 pixel-wise, directly from initial pressure spectra $$S_{\text {p}_0}(\lambda , \mathbf {x})$$ S p 0 ( λ , x ) , which represent initial pressure values at a fixed spatial location $$\mathbf {x}$$ x over all recorded wavelengths $$\lambda$$ λ . The method is compared to linear unmixing approaches, as well as pO $$_2$$ 2 and blood gas analysis reference measurements. Experimental results suggest that the proposed method is able to obtain sO $$_2$$ 2 estimates from multispectral photoacoustic measurements in silico, in vitro, and in vivo. |
format |
article |
author |
Janek Gröhl Thomas Kirchner Tim J. Adler Lina Hacker Niklas Holzwarth Adrián Hernández-Aguilera Mildred A. Herrera Edgar Santos Sarah E. Bohndiek Lena Maier-Hein |
author_facet |
Janek Gröhl Thomas Kirchner Tim J. Adler Lina Hacker Niklas Holzwarth Adrián Hernández-Aguilera Mildred A. Herrera Edgar Santos Sarah E. Bohndiek Lena Maier-Hein |
author_sort |
Janek Gröhl |
title |
Learned spectral decoloring enables photoacoustic oximetry |
title_short |
Learned spectral decoloring enables photoacoustic oximetry |
title_full |
Learned spectral decoloring enables photoacoustic oximetry |
title_fullStr |
Learned spectral decoloring enables photoacoustic oximetry |
title_full_unstemmed |
Learned spectral decoloring enables photoacoustic oximetry |
title_sort |
learned spectral decoloring enables photoacoustic oximetry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/019d73fc5cf4474e8021811512243c33 |
work_keys_str_mv |
AT janekgrohl learnedspectraldecoloringenablesphotoacousticoximetry AT thomaskirchner learnedspectraldecoloringenablesphotoacousticoximetry AT timjadler learnedspectraldecoloringenablesphotoacousticoximetry AT linahacker learnedspectraldecoloringenablesphotoacousticoximetry AT niklasholzwarth learnedspectraldecoloringenablesphotoacousticoximetry AT adrianhernandezaguilera learnedspectraldecoloringenablesphotoacousticoximetry AT mildredaherrera learnedspectraldecoloringenablesphotoacousticoximetry AT edgarsantos learnedspectraldecoloringenablesphotoacousticoximetry AT sarahebohndiek learnedspectraldecoloringenablesphotoacousticoximetry AT lenamaierhein learnedspectraldecoloringenablesphotoacousticoximetry |
_version_ |
1718383612335751168 |