Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.

We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David M Kietrys, Ann E Barr-Gillespie, Mamta Amin, Christine K Wade, Steve N Popoff, Mary F Barbe
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/01bfee916ce5426cb4a4c06f7a140784
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:01bfee916ce5426cb4a4c06f7a140784
record_format dspace
spelling oai:doaj.org-article:01bfee916ce5426cb4a4c06f7a1407842021-11-18T08:13:16ZAging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.1932-620310.1371/journal.pone.0046954https://doaj.org/article/01bfee916ce5426cb4a4c06f7a1407842012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23056540/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF) handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC) as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF)-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.David M KietrysAnn E Barr-GillespieMamta AminChristine K WadeSteve N PopoffMary F BarbePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 10, p e46954 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
David M Kietrys
Ann E Barr-Gillespie
Mamta Amin
Christine K Wade
Steve N Popoff
Mary F Barbe
Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
description We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF) handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC) as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF)-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.
format article
author David M Kietrys
Ann E Barr-Gillespie
Mamta Amin
Christine K Wade
Steve N Popoff
Mary F Barbe
author_facet David M Kietrys
Ann E Barr-Gillespie
Mamta Amin
Christine K Wade
Steve N Popoff
Mary F Barbe
author_sort David M Kietrys
title Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
title_short Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
title_full Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
title_fullStr Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
title_full_unstemmed Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
title_sort aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/01bfee916ce5426cb4a4c06f7a140784
work_keys_str_mv AT davidmkietrys agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
AT annebarrgillespie agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
AT mamtaamin agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
AT christinekwade agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
AT stevenpopoff agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
AT maryfbarbe agingcontributestoinflammationinupperextremitytendonsanddeclinesinforelimbagilityinaratmodelofupperextremityoveruse
_version_ 1718422024345354240