Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It

Salinity is one of the most important abiotic stresses that influences plant growth and productivity worldwide. Salinity affects plant growth by ionic toxicity, osmotic stress, hormonal imbalance, nutrient mobilization reduction, and reactive oxygen species (ROS). To survive in saline soils, plants...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roohallah Saberi Riseh, Marzieh Ebrahimi-Zarandi, Elahe Tamanadar, Mojde Moradi Pour, Vijay Kumar Thakur
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/01c74e7984064afeb46834c9bb7e4848
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Salinity is one of the most important abiotic stresses that influences plant growth and productivity worldwide. Salinity affects plant growth by ionic toxicity, osmotic stress, hormonal imbalance, nutrient mobilization reduction, and reactive oxygen species (ROS). To survive in saline soils, plants have developed various physiological and biochemical strategies such as ion exchange, activation of antioxidant enzymes, and hormonal stimulation. In addition to plant adaption mechanisms, plant growth-promoting rhizobacteria (PGPR) can enhance salt tolerance in plants via ion homeostasis, production of antioxidants, ACC deaminase, phytohormones, extracellular polymeric substance (EPS), volatile organic compounds, accumulation of osmolytes, activation of plant antioxidative enzymes, and improvement of nutrients uptake. One of the important issues in microbial biotechnology is establishing a link between the beneficial strains screened in the laboratory with industry and the consumer. Therefore, in the development of biocontrol agents, it is necessary to study the optimization of conditions for mass reproduction and the selection of a suitable carrier for their final formulation. Toward sustainable agriculture, the use of appropriate formulations of bacterial agents as high-performance biofertilizers, including microbial biocapsules, is necessary to improve salt tolerance and crop productivity.