Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments
In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmf...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/01f95527ad264815827dfd7376a8cd48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:01f95527ad264815827dfd7376a8cd48 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:01f95527ad264815827dfd7376a8cd482021-11-25T17:32:16ZDynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments10.3390/foods101125352304-8158https://doaj.org/article/01f95527ad264815827dfd7376a8cd482021-10-01T00:00:00Zhttps://www.mdpi.com/2304-8158/10/11/2535https://doaj.org/toc/2304-8158In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmful chemicals and on microbiological safety. The case studies analysed consider the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods: pureed potato and prune juice, using <i>Geobacillus stearothermophilus</i> as an indicator. It presents two contradictory situations: on the one hand, the application of a high-temperature treatment to a low acid food with <i>G. stearothermophilus</i> spores causes their inactivation, reaching food safety and stability from a microbiological point of view. On the other hand, high temperatures favour the appearance of acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal conditions between 120 and 135 °C) in food from two perspectives: microbiological safety/stability and acrylamide production. After analysing both objectives simultaneously, it is concluded that, contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide production for the same level of microbial inactivation. This is due to the different dynamics and sensitivities of the processes at high temperatures. These results, as well as the presented methodology, can be a basis of analysis for decision makers to design heat treatments that ensure food safety while minimizing the amount of acrylamide (or other harmful substances) produced.Jose Lucas Peñalver-SotoAlberto GarreArantxa AznarPablo S. FernándezJose A. EgeaMDPI AGarticlefood safetyacrylamide formationthermal resistancedynamic modelssimulationChemical technologyTP1-1185ENFoods, Vol 10, Iss 2535, p 2535 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
food safety acrylamide formation thermal resistance dynamic models simulation Chemical technology TP1-1185 |
spellingShingle |
food safety acrylamide formation thermal resistance dynamic models simulation Chemical technology TP1-1185 Jose Lucas Peñalver-Soto Alberto Garre Arantxa Aznar Pablo S. Fernández Jose A. Egea Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
description |
In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmful chemicals and on microbiological safety. The case studies analysed consider the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods: pureed potato and prune juice, using <i>Geobacillus stearothermophilus</i> as an indicator. It presents two contradictory situations: on the one hand, the application of a high-temperature treatment to a low acid food with <i>G. stearothermophilus</i> spores causes their inactivation, reaching food safety and stability from a microbiological point of view. On the other hand, high temperatures favour the appearance of acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal conditions between 120 and 135 °C) in food from two perspectives: microbiological safety/stability and acrylamide production. After analysing both objectives simultaneously, it is concluded that, contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide production for the same level of microbial inactivation. This is due to the different dynamics and sensitivities of the processes at high temperatures. These results, as well as the presented methodology, can be a basis of analysis for decision makers to design heat treatments that ensure food safety while minimizing the amount of acrylamide (or other harmful substances) produced. |
format |
article |
author |
Jose Lucas Peñalver-Soto Alberto Garre Arantxa Aznar Pablo S. Fernández Jose A. Egea |
author_facet |
Jose Lucas Peñalver-Soto Alberto Garre Arantxa Aznar Pablo S. Fernández Jose A. Egea |
author_sort |
Jose Lucas Peñalver-Soto |
title |
Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
title_short |
Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
title_full |
Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
title_fullStr |
Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
title_full_unstemmed |
Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments |
title_sort |
dynamics of microbial inactivation and acrylamide production in high-temperature heat treatments |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/01f95527ad264815827dfd7376a8cd48 |
work_keys_str_mv |
AT joselucaspenalversoto dynamicsofmicrobialinactivationandacrylamideproductioninhightemperatureheattreatments AT albertogarre dynamicsofmicrobialinactivationandacrylamideproductioninhightemperatureheattreatments AT arantxaaznar dynamicsofmicrobialinactivationandacrylamideproductioninhightemperatureheattreatments AT pablosfernandez dynamicsofmicrobialinactivationandacrylamideproductioninhightemperatureheattreatments AT joseaegea dynamicsofmicrobialinactivationandacrylamideproductioninhightemperatureheattreatments |
_version_ |
1718412205086474240 |