Including trait-based early warning signals helps predict population collapse
Predicting population collapse by monitoring key early warning signals in time-series data may highlight when interventions are needed. Here, the authors show that including information on phenotypic traits like body size can more accurately predict critical transitions than abundance data alone.
Guardado en:
Autores principales: | Christopher F. Clements, Arpat Ozgul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/01fed31c4bbf43e487fd8f45eb182cff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Early warning signals of recovery in complex systems
por: Christopher F. Clements, et al.
Publicado: (2019) -
Experimental evidence suggests that specular reflectance and glossy appearance help amplify warning signals
por: Samuel J. Waldron, et al.
Publicado: (2017) -
Early warning score in predicting the severity of acute pancreatitis
por: S Poudyal, et al.
Publicado: (2016) -
Machine learning dismantling and early-warning signals of disintegration in complex systems
por: Marco Grassia, et al.
Publicado: (2021) -
Probabilistic tsunami forecasting for early warning
por: J. Selva, et al.
Publicado: (2021)