Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension

The identification of universal properties from minimally processed data sets is one goal of machine learning techniques applied to statistical physics. Here, we study how the minimum number of variables needed to accurately describe the important features of a data set—the intrinsic dimension (I_{d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. Mendes-Santos, X. Turkeshi, M. Dalmonte, Alex Rodriguez
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/022d2f65518840b0bedc492738de178e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:022d2f65518840b0bedc492738de178e
record_format dspace
spelling oai:doaj.org-article:022d2f65518840b0bedc492738de178e2021-12-02T16:22:43ZUnsupervised Learning Universal Critical Behavior via the Intrinsic Dimension10.1103/PhysRevX.11.0110402160-3308https://doaj.org/article/022d2f65518840b0bedc492738de178e2021-02-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.011040http://doi.org/10.1103/PhysRevX.11.011040https://doaj.org/toc/2160-3308The identification of universal properties from minimally processed data sets is one goal of machine learning techniques applied to statistical physics. Here, we study how the minimum number of variables needed to accurately describe the important features of a data set—the intrinsic dimension (I_{d})—behaves in the vicinity of phase transitions. We employ state-of-the-art nearest-neighbors-based I_{d} estimators to compute the I_{d} of raw Monte Carlo thermal configurations across different phase transitions: first-order, second-order, and Berezinskii-Kosterlitz-Thouless. For all the considered cases, we find that the I_{d} uniquely characterizes the transition regime. The finite-size analysis of the I_{d} allows us to not only identify critical points with an accuracy comparable to methods that rely on a priori identification of order parameters but also to determine the corresponding (critical) exponent ν in the case of continuous transitions. For the case of topological transitions, this analysis overcomes the reported limitations affecting other unsupervised learning methods. Our work reveals how raw data sets display unique signatures of universal behavior in the absence of any dimensional reduction scheme and suggest direct parallelism between conventional order parameters in real space and the intrinsic dimension in the data space.T. Mendes-SantosX. TurkeshiM. DalmonteAlex RodriguezAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 1, p 011040 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
T. Mendes-Santos
X. Turkeshi
M. Dalmonte
Alex Rodriguez
Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
description The identification of universal properties from minimally processed data sets is one goal of machine learning techniques applied to statistical physics. Here, we study how the minimum number of variables needed to accurately describe the important features of a data set—the intrinsic dimension (I_{d})—behaves in the vicinity of phase transitions. We employ state-of-the-art nearest-neighbors-based I_{d} estimators to compute the I_{d} of raw Monte Carlo thermal configurations across different phase transitions: first-order, second-order, and Berezinskii-Kosterlitz-Thouless. For all the considered cases, we find that the I_{d} uniquely characterizes the transition regime. The finite-size analysis of the I_{d} allows us to not only identify critical points with an accuracy comparable to methods that rely on a priori identification of order parameters but also to determine the corresponding (critical) exponent ν in the case of continuous transitions. For the case of topological transitions, this analysis overcomes the reported limitations affecting other unsupervised learning methods. Our work reveals how raw data sets display unique signatures of universal behavior in the absence of any dimensional reduction scheme and suggest direct parallelism between conventional order parameters in real space and the intrinsic dimension in the data space.
format article
author T. Mendes-Santos
X. Turkeshi
M. Dalmonte
Alex Rodriguez
author_facet T. Mendes-Santos
X. Turkeshi
M. Dalmonte
Alex Rodriguez
author_sort T. Mendes-Santos
title Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
title_short Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
title_full Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
title_fullStr Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
title_full_unstemmed Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension
title_sort unsupervised learning universal critical behavior via the intrinsic dimension
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/022d2f65518840b0bedc492738de178e
work_keys_str_mv AT tmendessantos unsupervisedlearninguniversalcriticalbehaviorviatheintrinsicdimension
AT xturkeshi unsupervisedlearninguniversalcriticalbehaviorviatheintrinsicdimension
AT mdalmonte unsupervisedlearninguniversalcriticalbehaviorviatheintrinsicdimension
AT alexrodriguez unsupervisedlearninguniversalcriticalbehaviorviatheintrinsicdimension
_version_ 1718384152026284032