Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans
The 302-neuron connectome of the nematode C. elegans has been completely mapped, yet the design principles that explain how the connectome structure determines its function are unknown. Here, the authors show that physical principles of symmetry and mathematical tools of symmetry groups can be used...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0238ddbd577a460d89eac4f807c5229d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0238ddbd577a460d89eac4f807c5229d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0238ddbd577a460d89eac4f807c5229d2021-12-02T14:39:17ZSymmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans10.1038/s41467-019-12675-82041-1723https://doaj.org/article/0238ddbd577a460d89eac4f807c5229d2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12675-8https://doaj.org/toc/2041-1723The 302-neuron connectome of the nematode C. elegans has been completely mapped, yet the design principles that explain how the connectome structure determines its function are unknown. Here, the authors show that physical principles of symmetry and mathematical tools of symmetry groups can be used to understand C. elegans neural locomotion circuits.Flaviano MoroneHernán A. MakseNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Flaviano Morone Hernán A. Makse Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
description |
The 302-neuron connectome of the nematode C. elegans has been completely mapped, yet the design principles that explain how the connectome structure determines its function are unknown. Here, the authors show that physical principles of symmetry and mathematical tools of symmetry groups can be used to understand C. elegans neural locomotion circuits. |
format |
article |
author |
Flaviano Morone Hernán A. Makse |
author_facet |
Flaviano Morone Hernán A. Makse |
author_sort |
Flaviano Morone |
title |
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
title_short |
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
title_full |
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
title_fullStr |
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
title_full_unstemmed |
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans |
title_sort |
symmetry group factorization reveals the structure-function relation in the neural connectome of caenorhabditis elegans |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/0238ddbd577a460d89eac4f807c5229d |
work_keys_str_mv |
AT flavianomorone symmetrygroupfactorizationrevealsthestructurefunctionrelationintheneuralconnectomeofcaenorhabditiselegans AT hernanamakse symmetrygroupfactorizationrevealsthestructurefunctionrelationintheneuralconnectomeofcaenorhabditiselegans |
_version_ |
1718390634068312064 |