Synthesis and thermal conductivity of functionalized biocarbon-Fe3O4 nanocomposite-based green nanofluid for heat transfer applications
Bio-based graphitic carbon was synthesized in this work by one-step carbonization of bamboo waste at low temperature. This bio-based carbon was then functionalized in order to decorated it with Fe3O4 nanoparticles. The functionalized biocarbon-Fe3O4 (f-biocarbon-Fe3O4) nanocomposite was synthesized...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0262fe4197aa44cc95f702ac5662593f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Bio-based graphitic carbon was synthesized in this work by one-step carbonization of bamboo waste at low temperature. This bio-based carbon was then functionalized in order to decorated it with Fe3O4 nanoparticles. The functionalized biocarbon-Fe3O4 (f-biocarbon-Fe3O4) nanocomposite was synthesized using ultrasound-assisted coprecipitation method which was then confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry. Water-based nanofluid was prepared using the synthesized f-biocarbon-Fe3O4 nanocomposite particles. Thermal conductivity of this nanofluid was analyzed at different concentrations and temperatures. A thermal conductivity enhancement of almost 80% was recorded at 35°C for nanofluid containing 0.1 vol.% of f-biocarbon-Fe3O4 nanocomposite particles compared to water. Also, empirical model is developed for prediction of thermal conductivity as a function of concentration and temperature of bamboo waste-derived f-biocarbon-Fe3O4 nanocomposite-based green nanofluid. |
---|