DeepGhost: real-time computational ghost imaging via deep learning
Abstract The potential of random pattern based computational ghost imaging (CGI) for real-time applications has been offset by its long image reconstruction time and inefficient reconstruction of complex diverse scenes. To overcome these problems, we propose a fast image reconstruction framework for...
Guardado en:
Autores principales: | Saad Rizvi, Jie Cao, Kaiyu Zhang, Qun Hao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0263495455744848bd5b08f1bf5b51bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning early stopping for non-degenerate ghost imaging
por: Chané Moodley, et al.
Publicado: (2021) -
The ghosts in the computer: the role of agency and animacy attributions in "ghost controls".
por: Francys Subiaul, et al.
Publicado: (2011) -
Counterfactual ghost imaging
por: Jonte R. Hance, et al.
Publicado: (2021) -
Experimental demonstration of spectral domain computational ghost imaging
por: Piotr Ryczkowski, et al.
Publicado: (2021) -
Gradient-Descent-like Ghost Imaging
por: Wen-Kai Yu, et al.
Publicado: (2021)